From supernovae to neutron stars Yudai Suwa Yukawa Institute for Theoretical Physics, Kyoto University
Contents Supernova Neutrino transfer Equation of state for supernova simulations From supernovae to neutron stars 2 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
A supernova (c)ASAS-SN project
Supernovae are made by neutron star formation Baade & Zwicky 1934 4 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Fe Standard scenario of core-collapse supernovae Final phase of stellar Neutron star formation Neutrinosphere formation evolution (core bounce ) ( neutrino trapping ) Neutron Fe Neutrinosphere Star Si O,Ne,Mg C+O HeH ρ c ~10 14 g cm -3 ρ c ~10 11 g cm -3 ρ c ~10 9 g cm -3 shock stall shock revival Supernova! HOW? NS Si O,Ne,Mg C+O HeH 5 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Current paradigm: neutrino-heating mechanism heating region shock cooling region absorption neutron staremission A CCSN emits O (10 58 ) of neutrinos with O (10) MeV. Neutrinos transfer energy Most of them are just escaping from the system (cooling) Part of them are absorbed in outer layer (heating) Heating overwhelms cooling in heating ( gain ) region 6 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
What do simulations solve? Numerical Simulations Hydrodynamics equations Neutrino Boltzmann d ρ equation dt + ρ ∇ · v = 0 , 1 − µ 2 � ∂ f � � d ln ρ � � � cdt + µ ∂ f df + 3 v + 1 Solve ρ d v ∂ r + µ cdt cr r ∂ µ simultaneously dt = −∇ P − ρ ∇ Φ , � � d ln ρ � � + 3 v − v E ∂ f µ 2 + cdt cr cr ∂ E de ∗ e ∗ + P �� � � dt + ∇ · = − ρ v · ∇ Φ + Q E , E 2 v = j (1 − f ) − χ f + c ( hc ) 3 dY e � � � � Rf ′ dµ ′ − f dt = Q N , � 1 − f ′ � dµ ′ (1 − f ) R . × △ Φ = 4 π G ρ , ρ : density , v : velocity , P : pressure , Φ : grav. f : neut. dist. func, µ : cos θ , E : neut. energy, potential, e * : total energy, Y e : elect. frac., j : emissivity, χ : absorptivity, R : scatt. Q : neutrino terms kernel 7 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Neutrino-driven explosion in multi-D simulation Exploding models driven by neutrino heating with 2D/3D simulations Takiwaki+ PASJ, 62 , L49 (2010) see also, e.g., see also, e.g., ApJ, 749 , 98 (2012) Suwa+ (2D) Marek & Janka (2009), Müller+ ApJ, 738 , 165 (2011) (3D) Hanke+ (2013), Lentz+ (2015), (2012), Bruenn+ (2013), Pan+ ApJ, 786 , 83 (2014) ApJ, 764 , 99 (2013) Melson+ (2015), Müller (2015) (2016), O’Connor & Couch MNRAS, 461 , L112 (2016) PASJ, 66 , L1 (2014) (2015) MNRAS, 454 , 3073 (2015) ApJ, 816 , 43 (2016) 8 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Contents Supernova Neutrino transfer Equation of state for supernova simulations From supernovae to neutron stars 9 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Why is neutrino transfer so important? Numerical Simulations Hydrodynamics equations Neutrino Boltzmann d ρ equation dt + ρ ∇ · v = 0 , 1 − µ 2 � ∂ f � � d ln ρ � � � cdt + µ ∂ f df + 3 v + 1 Solve ρ d v ∂ r + µ cdt cr r ∂ µ simultaneously dt = −∇ P − ρ ∇ Φ , � � d ln ρ � � + 3 v − v E ∂ f µ 2 + cdt cr cr ∂ E de ∗ e ∗ + P �� � � dt + ∇ · = − ρ v · ∇ Φ + Q E , E 2 v = j (1 − f ) − χ f + c ( hc ) 3 dY e � � � � Rf ′ dµ ′ − f dt = Q N , � 1 − f ′ � dµ ′ (1 − f ) R . × △ Φ = 4 π G ρ , ρ : density , v : velocity , P : pressure , Φ : grav. f : neut. dist. func, µ : cos θ , E : neut. energy, potential, e * : total energy, Y e : elect. frac., j : emissivity, χ : absorptivity, R : scatt. Q : neutrino terms kernel 10 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Boltzmann equation Sumiyoshi & Yamada (2012); in inertial frame � ∂ f in 1 − µ 2 1 + µ ν ν cos φ ν ∂ ∂ ∂ r ( r 2 f in ) + ∂θ (sin θ f in ) r 2 c ∂ t r sin θ � ∂ f in 1 − µ 2 ν sin φ ν ∂φ + 1 ∂ 1 − µ 2 f in � �� � + ν r sin θ r ∂ µ ν � δ f in 1 − µ 2 � 1 � cos θ ∂ ν (sin φ ν f in ) = − r sin θ ∂φ ν c δ t collision (5) � 1 � δ f = − R abs ( ε , Ω ) f ( ε , Ω ) c δ t emis - abs f in ( r, θ , φ , t ; µ ν , φ ν , ε in ) . + R emis ( ε , Ω )[1 − f ( ε , Ω )] . � d ε ′ ε ′ 2 3D 3D � 1 � δ f � d Ω ′ R scat ( ε , Ω ; ε ′ , Ω ′ ) f ( ε , Ω ) = − (2 π ) 3 c δ t in real space in momentum space scat � d ε ′ ε ′ 2 � × [1 − f ( ε ′ , Ω ′ )] + d Ω ′ R scat ( ε ′ , Ω ′ ; ε , Ω ) (2 π ) 3 7D in total × f ( ε ′ , Ω ′ )[1 − f ( ε , Ω )] , (9) � d ε ′ ε ′ 2 � 1 � � δ f d Ω ′ R pair - anni ( ε , Ω ; ε ′ , Ω ′ ) = − (2 π ) 3 c δ t pair � d ε ′ ε ′ 2 � 7D integro-di fg rential eq. × f ( ε , Ω ) f ( ε ′ , Ω ′ ) + d Ω ′ R pair - emis ( ε , Ω ; ε ′ , Ω ′ ) (2 π ) 3 × [1 − f ( ε , Ω )][1 − f ( ε ′ , Ω ′ )] , (11) so complex… 11 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Methods to solve Boltzmann eq. Direct integration of Boltzmann eq. with discrete-ordinate method => S N method It’s too costly, though. By taking angular moments of radiation fj elds � { E, F i , P ij } ∝ d Ω f { 1 , � i , � i � j } Moment equations; ∂ t E + ∂ i F i = S 0 ∂ t F i + ∂ j P ij = S 1 · · · To close the system, we need additional equation (the same as equation of state in hydrodynamics equation) 12 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Methods to solve Boltzmann eq. (cont.) The simplest way; only cooling terms are taken into account => leakage scheme (no transport; ∂ t e matter = - ∂ t E ) Next is di fg usion assumption, F ∝∇ E , but is wrong in optically thin regime. To take into account both optically thick and thin regime, modi fj cation is needed => Flux limited di fg usion (FLD) F is given by E and ∇ E Isotropic di fg usion source approximation (IDSA) F is given by the distance from last-scattering surface Higher moment ( P ) is helpful to obtain more precise solution. => M 1 closure P is given by E and F Variable Eddington factor (VE) P is given by solving simpler Boltzmann eq. S N > VE > M 1 > FLD, IDSA > leakage approximate ab initio lower cost higher cost 13 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Comparison of methods Yamada+ (1999) FLD (dashed lines) fm ux factor ( | F |/ E ) Monte-Carlo ( ▲ ) S N (solid line) Comparison of IDSA and S N is given in Liebendörfer+ (2009) and Berninger+ (2013) 14 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Methods to solve Boltzmann eq. (cont.) Methods used in supernova community S N Ott+ (2008) ; Sumiyoshi & Yamada (2012) ; Nagakura+ (2017) VE Buras+ (2006) ; Müller+ (2010) ; Hanke+ (2013) M 1 Obergaulinger+ (2014) ; O’Connor & Couch (2015) ; Skinner+ (2016) FLD Burrows+ (2006) ; Bruenn+ (2013) IDSA Suwa+ (2010) ; Takiwaki+ (2012) ; Pan+ (2016) and many others 15 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Questions How is nuclear physics related to supernova explosion? How can we investigate nuclear physics via supernova observations? 16 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Contents Supernova Neutrino transfer Equation of state for supernova simulations From supernovae to neutron stars 17 /28 20/2/2017 Yudai Suwa, Quarks and Compact Stars @ YITP
Recommend
More recommend