dense matter in neutron stars new insights from theory
play

Dense Matter in Neutron Stars: New Insights from Theory and - PowerPoint PPT Presentation

Dense Matter in Neutron Stars: New Insights from Theory and Observations. Sanjay Reddy INT & Univ. of Washington, Seattle EMMI workshop on Cold dense nuclear matter from short- range correlations to neutron stars, GSI, Darmstadt.


  1. Dense Matter in Neutron Stars: New Insights from Theory and Observations. Sanjay Reddy INT & Univ. of Washington, Seattle EMMI workshop on “Cold dense nuclear matter from short- range correlations to neutron stars”, GSI, Darmstadt.

  2. Recent Observations Massive Neutron Star 30 20 10 0 -10 -20 -30 -40 30

  3. Recent Observations Massive Neutron Star 30 20 10 0 -10 -20 -30 -40 30 Towards a measurement of neutron star radii MS0 MS0 MS2 MS2 2.5 MPA1 MPA1 AP3 AP3 PAL1 PAL1 ENG ENG AP4 AP4 WFF1 WFF1 2.0 M NS � M � � MS1 MS1 FSU FSU 1.5 SQM1 SQM1 GM3 GM3 GS1 GS1 1.0 SQM3 SQM3 PAL6 PAL6 0.5 6 8 10 12 14 16 R NS � km �

  4. Recent Observations Massive Neutron Star Thermal Relaxation in Accreting Neutron Stars 30 20 10 0 -10 -20 -30 -40 30 Towards a measurement of neutron star radii MS0 MS0 MS2 MS2 2.5 MPA1 MPA1 AP3 AP3 PAL1 PAL1 ENG ENG AP4 AP4 WFF1 WFF1 2.0 M NS � M � � MS1 MS1 FSU FSU 1.5 SQM1 SQM1 GM3 GM3 GS1 GS1 1.0 SQM3 SQM3 PAL6 PAL6 0.5 6 8 10 12 14 16 R NS � km �

  5. Recent Observations Massive Neutron Star Thermal Relaxation in Accreting Neutron Stars 30 20 10 0 -10 -20 -30 -40 30 Kilo Nova (r-process ?) Towards a measurement of neutron star radii MS0 MS0 MS2 MS2 2.5 MPA1 MPA1 AP3 AP3 PAL1 PAL1 ENG ENG AP4 AP4 WFF1 WFF1 2.0 M NS � M � � MS1 MS1 FSU FSU 1.5 SQM1 SQM1 GM3 GM3 GS1 GS1 1.0 SQM3 SQM3 PAL6 PAL6 Multi messenger (e.g. Metzger & Ber 0.5 6 8 10 12 14 16 R NS � km �

  6. Phases of Dense Matter in Neutron nuclei, (solid) Crust: electrons r e ~12 t 10 4 u O Inner Crust: ~11.5 (Solid-Superfluid) 4x10 11 nuclei, electrons, neutrons ~10 Outer Core 2x10 14 (Superfluid- Superconductor) Density Radius neutrons, protons (g/cm 3 ) electrons (km) 6x10 14 Inner ~3 Core ? 10 15

  7. Pressure v/s Energy Density (EoS) P= ε log P( ε ) neutron drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 )

  8. Pressure v/s Energy Density (EoS) P= ε log P( ε ) neutron drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 ) can calculate can speculate

  9. Pressure v/s Energy Density (EoS) Maximum Mass P= ε log P( ε ) neutron drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 ) can calculate can speculate

  10. Pressure v/s Energy Density (EoS) Maximum Mass P= ε log P( ε ) neutron Radius drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 ) can calculate can speculate

  11. Pressure v/s Energy Density (EoS) Maximum Mass r e d r O t s r i F n o t i i s n a r T P= ε e s a h P log P( ε ) neutron Radius drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 ) can calculate can speculate

  12. Pressure v/s Energy Density (EoS) 2 M ⊙ NS ✘ Maximum Mass r e d r O t s r i F n o t i i s n a r T P= ε e s a h P log P( ε ) neutron Radius drip nuclear matter relativistic electrons crust core 7 11 14 15 log ε (g/cm 3 ) can calculate can speculate

  13. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 15 14 log ε (g/cm 3 ) can calculate can speculate

  14. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 Q ' p F ' Λ B Λ B ' 500 MeV 15 14 log ε (g/cm 3 ) can calculate can speculate

  15. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 Q ' p F ' Λ B Λ B ' 500 MeV Chiral EFT Systematic error estimates 15 14 log ε (g/cm 3 ) can calculate can speculate

  16. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 Q ' p F ' Λ B Λ B ' 500 MeV Chiral EFT Systematic error estimates Chiral EFT + 𝚬 Systematic error estimates 15 14 log ε (g/cm 3 ) can calculate can speculate

  17. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 Q ' p F ' Λ B Λ B ' 500 MeV Chiral EFT Systematic error estimates Recall talks by Schwenk & Weise Chiral EFT + 𝚬 Systematic error estimates 15 14 log ε (g/cm 3 ) can calculate can speculate

  18. EFT and Phenomenological Models crust core inner core n B (fm -3 ) 0.08 0.16 0.32 0.48 0.64 Q ' p F ' Λ B Λ B ' 500 MeV Chiral EFT Systematic error estimates Recall talks by Schwenk & Weise Chiral EFT + 𝚬 Systematic error estimates Phen. Potentials 2+3 body Errors can only be estimated crudely 15 14 log ε (g/cm 3 ) can calculate can speculate

  19. S, L & Equation of State of Neutron Matter { ✏ = ⇢ E ( ⇢ ) P ( ✏ ) = ⇢ 2 @ E ( ⇢ ) r e t t a M @⇢ n E ( ρ n , ρ p ) MeV o r t u e N 16 1 2 ρ 0 = 2 . 6 × 10 14 g / cm 3 -16 Nuclei exist here Symmetric Matter ( ρ � ρ 0 ) E n ( ρ ' ρ 0 ) ' � 16 MeV + S + L 3 ρ 0

  20. S, L & Equation of State of Neutron Matter { ✏ = ⇢ E ( ⇢ ) P ( ✏ ) = ⇢ 2 @ E ( ⇢ ) r e t t a M @⇢ n E ( ρ n , ρ p ) MeV o r t u e N 16 1 2 S=32±3 MeV ρ 0 = 2 . 6 × 10 14 g / cm 3 -16 Nuclei exist here Symmetric Matter ( ρ � ρ 0 ) E n ( ρ ' ρ 0 ) ' � 16 MeV + S + L 3 ρ 0

  21. S, L & Equation of State of Neutron Matter { ✏ = ⇢ E ( ⇢ ) P ( ✏ ) = ⇢ 2 @ E ( ⇢ ) L = 50 ± 30 MeV (Expt) r e t t a M @⇢ n E ( ρ n , ρ p ) MeV o r t u e N 16 1 2 S=32±3 MeV ρ 0 = 2 . 6 × 10 14 g / cm 3 -16 Nuclei exist here Symmetric Matter ( ρ � ρ 0 ) E n ( ρ ' ρ 0 ) ' � 16 MeV + S + L 3 ρ 0

  22. S, L & Equation of State of Neutron Matter { ✏ = ⇢ E ( ⇢ ) P ( ✏ ) = ⇢ 2 @ E ( ⇢ ) L = 50 ± 30 MeV (Expt) r e t t a M @⇢ n E ( ρ n , ρ p ) MeV o r t u e N 16 1 2 S=32±3 MeV ρ 0 = 2 . 6 × 10 14 g / cm 3 -16 Nuclei exist here Symmetric Matter ( ρ � ρ 0 ) E n ( ρ ' ρ 0 ) ' � 16 MeV + S + L 3 ρ 0

  23. Neutron Matter from Ab-initio Theory (at nuclear saturation density) 35 Energy per 18 Neutron 16 (MeV) Empirical Value 14 12 Caveat: Separation between 2N and 3N contributions is resolution scale and model dependent.

  24. Neutron Matter from Ab-initio Theory (at nuclear saturation density) Fermi Gas 35 Energy per 18 Neutron 16 (MeV) Empirical Value 14 12 Caveat: Separation between 2N and 3N contributions is resolution scale and model dependent.

  25. Neutron Matter from Ab-initio Theory (at nuclear saturation density) Fermi Gas 35 Energy per 18 Neutron 16 (MeV) Empirical Value 14 Theory 2N 12 Caveat: Separation between 2N and 3N contributions is resolution scale and model dependent.

  26. Neutron Matter from Ab-initio Theory (at nuclear saturation density) Fermi Gas 35 Energy per 18 Neutron Theory 2N+ 3N 16 (MeV) Empirical Value 14 Theory 2N 12 Caveat: Separation between 2N and 3N contributions is resolution scale and model dependent.

  27. Current Status of Neutron Matter EoS Studies Prediction Extrapolation 100 70 35.1 20 EM 500 MeV EGM 450/500 MeV 60 L [MeV] EGM 450/700 MeV 80 NLO lattice (2009) 50 QMC (2010) 15 40 APR (1998) E/N [MeV] 60 GCR (2012) E/N [MeV] 30 30 32 34 36 S v [MeV] 10 40 33.7 32 5 20 S v = 30.5 MeV (NN) 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 -3 ] n [fm n [fm -3 ] Gandolfi, Carlson, Reddy Hebeler, Schwenk,Furnstahl, Tews, … Holt, Kaiser, Weise, … Hagen, Papenbrock, … Implications for NS radius: R = 12 ± 2 km

  28. QMC with Phenomenological Potentials Gandolfi, Carlson, Reddy (2010) S & L are correlated by 100 the model. 70 Energy per Neutron (MeV) Experimental 60 L (MeV) 35.1 80 measurement of L & S 50 40 with ~ 1 MeV error 33.7 60 30 needed to test the 30 32 34 36 E sym (MeV) S (MeV) model. 40 Up to about twice Fermi-gas saturation density, the 3- 20 32 body contribution is S E sym = 30.5 MeV (NN) smaller than the 2-body 0 0 0.1 0.2 0.3 0.4 0.5 force. -3 ) Neutron Density (fm This was a first attempt at estimating extrapolation errors in phenomenological models. Need to understand how to quantify uncertainties of this extrapolation by varying the short-distance behavior of both 2 and 3 body forces together.

  29. Neutron Star Structure 3 ρ central =5 ρ 0 2 ) Causality: R>2.9 (GM/c 2.5 =4 ρ 0 central ρ 1.97(4) M solar 2 =3 ρ M (M solar ) 0 central ρ 32 1.5 1.4 M solar =2 ρ 0 l a r t n ρ e 1 c L=55 33.7 L=64 0.5 35.1 L=31 S L=42 E sym = 30.5 MeV (NN) 0 8 9 10 11 12 13 14 15 16 R (km)

  30. Neutron Star Structure 3 ρ central =5 ρ 0 2 ) Causality: R>2.9 (GM/c 2.5 =4 ρ 0 central ρ 1.97(4) M solar 2 =3 ρ M (M solar ) 0 central ρ 32 1.5 1.4 M solar =2 ρ 0 l a r t n ρ e 1 c L=55 33.7 L=64 0.5 35.1 L=31 S L=42 E sym = 30.5 MeV (NN) 0 8 9 10 11 12 13 14 15 16 R (km)

  31. Neutron Star Structure 3 ρ central =5 ρ 0 2 ) Causality: R>2.9 (GM/c 2.5 =4 ρ 0 central A 10% Radius Measurement ρ 1.97(4) M solar 2 =3 ρ M (M solar ) 0 central ρ 32 1.5 1.4 M solar =2 ρ 0 l a r t n ρ e 1 c L=55 33.7 L=64 0.5 35.1 L=31 S L=42 E sym = 30.5 MeV (NN) 0 8 9 10 11 12 13 14 15 16 R (km)

Recommend


More recommend