Problems for MOS Section Lecture notes: Sec. 4 F. Najmabadi, ECE65, Winter 2012
Exercise 1: Compute i D ( µ p C ox ( W/L ) = 0.4 m A/V 2 , V tp = − 3 V and λ = 0 ). PMOS with v SG = 5 V and v GD = 6 V. V OV = v SG – | V tp | = 5 – 3 = 2 V V OV > 0 → MOS is ON o v SD = v SG + v GD = 5 + 6 = 11 V v SD = 11 > V OV = 2 → MOS in saturation o W = µ = × × = 2 - 3 2 0 . 5 0.5 0.4 10 (2) 0.8 mA i C V D p ox OV L F. Najmabadi, ECE65, Winter 2012
Exercise 2: Find V S ( µ n C ox ( W/L ) = 0.5 m A/V 2 , V tn = 0.8 V and λ = 0 ). Since i D = 10 µ A, MOS is ON Assume MOS in saturation W = µ 2 0 . 5 i C V D n ox OV L × = × × → = - 6 - 3 2 10 10 0.5 0.5 10 0 . 2 V V V OV OV = + = + = 0 . 2 0 . 8 1 V v V V GS OV t = − = − → = − 0 1 V v V V V V GS G S S S = − = − − = 7 ( 1 ) 8 V v V V DS D S = > = 8 0.2 V (MOS in saturation ) v V DS OV F. Najmabadi, ECE65, Winter 2012
Exercise 3: Consider this PMOS with µ p C ox ( W/L ) = 0.6 m A/V 2 , V tp = −1 V and λ = 0 . For what values of V G , PMOS will be ON? A) For what values of V D , PMOS will be in triode? (in terms of V G ) B) For what values of V D , PMOS will be in saturation? (in terms of V G ) C) = − = − 5 v V V V SG S G G = − = − 5 v V V V SD S D D = − = − − = − | | 5 | | 4 V v V V V V OV SG tp G tp G A) Range of V G for MOS ON? ≥ → − ≥ → ≤ 0 4 0 4 V V V V OV G G B) Range of V D for MOS in triode? ≤ → − ≤ − → ≥ + 5 4 1 v V V V V V SD OV D G D G C) Range of V D for MOS in saturation? ≥ → − ≥ − → ≤ + 5 4 1 v V V V V V SD OV D G D G F. Najmabadi, ECE65, Winter 2012
Exercise 4: Find v GS , v DS , and i D ( µ n C ox ( W/L ) = 0.4 m A/V 2 , V tn = 3 V and λ = 0 ). = + + − = + + − 6 3 3 GS - KVL : 0 10 10 15 10 15 i v i V V i G GS D OV t D → = + 3 12 10 V i OV D = + + − 3 3 DS - KVL : 15 10 10 15 i v i D DS D → = + × 3 30 2 10 v i DS D Not in cut-off as for i D = 0, GS-KVL gives V OV =12 V > 0. Assume MOS in saturation W = µ 2 0 . 5 i C V D n ox OV L = + × × × 3 - 3 2 GS - KVL : 12 10 0.5 0.4 10 V V OV OV + − = 2 0.2 12 0 V V OV OV = − > 10 . 64 V ( incorrect, need 0) V V OV OV = → = 5 . 64 V 8 . 64 V V v OV GS = + → = 3 GS - KVL : 12 10 6 . 36 mA V i i OV D D = + × → = 3 DS - KVL : 30 2 10 17 27 V v i v . DS D DS = > = 17.3 5.64 V (MOS in saturation ) v V F. Najmabadi, ECE65, Winter 2012 DS OV
Exercise 5: Find R such that PMOS is in saturation with V OV = 0.6 V ( µ p C ox = 0.1 m A/V 2 , W/L = 10/0.18 , V tp = −0.4 V and λ = 0) . In an IC, W/L (typically specified as a fraction) is a design parameter for MOS circuits. W = µ = × × × × = 2 - 3 2 0 . 5 0.5 0.1 10 ( 10 / 0 . 18 ) ( 0 . 6 ) 1 mA i C V D p ox OV L = + SG - KVL : 1.8 Ri v D SG = − + + 3 10 | | R V V OV tp − = + + 3 1.8 10 0 . 6 0 . 4 R = Ω 800 R = + → = SD - KVL : 1.8 1 . 0 V R i v v D SD SD = > = → 1 . 0 0 . 6 MOS in saturation v V SD OV F. Najmabadi, ECE65, Winter 2012
Exercise 6: Find V D ( µ n C ox ( W/L ) = 0.5 m A/V 2 , V t = 0.8 V and ignore channel-width modulation). When the gate and drain of a MOS are connected to each other, MOS becomes a 2-terminal device. o Called diode-connected transistor If MOS is ON ( v DS = v GS ≥ V t ), MOS will always be in saturation! o v DS = v GS ≥ v GS − V t = V OV W = µ 2 0 . 5 i C V D n ox OV L = + = × × × + + 3 3 - 3 2 5 10 10 0.5 0.5 10 DS/GS - KVL : i v V V V D GS OV OV t + − = 2 0.25 4 . 2 0 V V OV OV = − > 6 . 56 V ( incorrect, need 0) V V OV OV = 2 . 56 V V OV = + → = = = 3 . 36 V v V V V v v GS OV t D DS GS F. Najmabadi, ECE65, Winter 2012
Exercise 7: Find V 1 and V 2 ( µ n C ox ( W/L ) = 5 m A/V 2 , V t = 1 V and ignore channel-width modulation). = + − = + + − 3 3 0 10 2 . 5 10 2 . 5 GS1 - KVL : v i V V i 1 1 GS D OV t D → + = 3 10 1 . 5 V i 1 OV D = + + − 3 2.5 10 2 . 5 GS2 - KVL : v v i 2 1 GS DS D = + + − 3 2.5 10 2 . 5 DS - KVL : v v i DS 2 DS 1 D = = KCL : i i i 1 2 D D D Q1 is not in cut-off as for i D1 = 0, GS1-KVL gives V OV =1.5 V > 0. Q2 is not in cut-off either as i D1 = i D2 > 0 o F. Najmabadi, ECE65, Winter 2012
Exercise 7 (cont’d) : Find V 1 and V 2 ( µ n C ox ( W/L ) = 5 m A/V 2 , V t = 1 V and ignore channel-width modulation). Assume both MOS in saturation W = = µ 2 0 . 5 i i C V 1 1 D D n ox OV L = + = + × × × 3 3 - 3 2 1.5 10 10 0.5 5 10 GS1 - KVL : V i V V 1 1 OV D OV OV + − = 2 2.5 1 . 5 0 V V 1 1 OV OV = − > 1 . 0 V ( incorrect, need 0) V V 1 OV OV = 0 . 60 V V OV 1 Both MOS in saturation, i D 2 = i D 1 and λ = 0: V OV 2 = V OV 1 = 0.60 V = + = + = 0 . 6 1 1 . 6 V v V V 1 1 GS OV t = − = − → = − 0 1 . 6 V v V V V V 1 1 1 2 2 GS G S = + = + = 0 . 6 1 1 . 6 V v V V 2 2 GS OV t = − = − → = 2 . 5 0 . 9 V v V V V V 2 2 2 1 1 GS G S F. Najmabadi, ECE65, Winter 2012
Exercise 7 (cont’d) : Find V 1 and V 2 ( µ n C ox ( W/L ) = 5 m A/V 2 , V t = 1 V and ignore channel-width modulation). Need to confirm our assumption of both MOS in saturation = − = − = − − = 0 . 90 ( 1 . 6 ) 2 . 5 V v V V V V 1 1 1 1 2 DS D S = > = 2 . 5 0 . 6 V v V 1 1 DS OV = − = − = − = 2 . 5 2 . 5 0 . 9 1 . 6 V v V V V 2 2 2 1 DS D S = > = 1 . 6 0 . 6 V v V 2 2 DS OV For circuits with multiple transistors, it is usually advantageous to keep track of node voltages (at transistor terminals! F. Najmabadi, ECE65, Winter 2012
Recommend
More recommend