pid controller basic design
play

PID Controller - Basic Design 1. Let input to controller by E ( z ) - PowerPoint PPT Presentation

PID Controller - Basic Design 1. Let input to controller by E ( z ) and output from it be U ( z ) . If gain is K , i is integral time and d is derivative time, t e ( t ) + 1 de ( t ) u ( t ) = K e ( t ) dt + d i dt 0 U (


  1. PID Controller - Basic Design 1. Let input to controller by E ( z ) and output from it be U ( z ) . If gain is K , τ i is integral time and τ d is derivative time, � t e ( t ) + 1 de ( t ) � � u ( t ) = K e ( t ) dt + τ d τ i dt 0 U ( s ) = K (1 + 1 τ i s + τ d s ) E ( s ) = S c ( s ) △ U ( s ) R c ( s ) E ( s ) If integral mode is present, R c (0) = 0 . Filtered derivative mode: � � 1 + 1 τ d s u ( t ) = K τ i s + e ( t ) 1 + τ d s N N is a large number, of the order of 100. 1 Digital Control Kannan M. Moudgalya, Autumn 2007

  2. Derivative Mode 2. • Integral Mode using Tustin/Bilinear: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode – Reciprocal results in wildly oscillating control effort. Rect- angular approximation solves this problem. – Backward difference formula: 1 z s ↔ T s z − 1 – Forward difference formula: 1 T s s ↔ z − 1 – Both are used • Rectangular approximation is used for integral mode as well 2 Digital Control Kannan M. Moudgalya, Autumn 2007

  3. 2-DOF Controller 3. y r T c u G = B R c A − S c R c u = T c r − S c y R c R c It is easy to arrive at the following relation between r and y . y = T c B/A BT c r = r R c 1 + BS c /AR c AR c + BS c Error e , given by r − y is given by BT c r = AR c + BS c − BT c � � e = 1 − r AR c + BS c AR c + BS c 3 Digital Control Kannan M. Moudgalya, Autumn 2007

  4. Offset-Free Tracking of Steps with Integral 4. Recall expression for E , showing the dependence on z : E ( z ) = A ( z ) R c ( z ) + B ( z ) S c ( z ) − B ( z ) T c ( z ) R ( z ) A ( z ) R c ( z ) + B ( z ) S c ( z ) z − 1 A ( z ) R c ( z ) + B ( z ) S c ( z ) − B ( z ) T c ( z ) z n →∞ e ( n ) = lim lim z A ( z ) R c ( z ) + B ( z ) S c ( z ) z − 1 z → 1 Because the controller has an integral action, R c (1) = 0 : e ( ∞ ) = S c ( z ) − T c ( z ) � = S c (1) − T c (1) � � S c ( z ) S c (1) � z =1 This condition can be satisfied if one of the following is met: T c = S c T c = S c (1) T c (1) = S c (1) 4 Digital Control Kannan M. Moudgalya, Autumn 2007

  5. T c = S c : Offset-Free Tracking with Integral 5. y r T c u G = B R c A − u = T c r − S c y S c R c R c R c How do we obtain the standard configuration, with e = r − y ? v G c ( z ) = S c G ( z ) = B r e u y R c A − Answer: T c = S c . Substituting this in the above equation, u = S c ( r − y ) = S c e = T c e R c R c R c T c = S c ensures offset free tracking! 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  6. T c = S c : Offset-Free Tracking with Integral 6. • Recall: T c = S c results in offset free tracking and u = S c e = T c e R c R c • Precisely what is available from standard PID controller: U ( s ) = K (1 + 1 τ i s + τ d s ) E ( s ) • Recall approximations: Integral: 1 s ↔ T s z + 1 Derivative: s ↔ 1 z − 1 z − 1 , 2 T s z • Substituting, 1 + 1 T s z + 1 z − 1 + τ d z − 1 � � U ( z ) = K E ( z ) τ i 2 T s z 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  7. T c = S c : Offset-Free Tracking with Integral 7. Recall from the previous slide: 1 + 1 T s z + 1 z − 1 + τ d z − 1 � � U ( z ) = K E ( z ) τ i 2 T s z Cross multiplying and taking inverse Z-transform, obtain u ( n + 1) = u ( n ) + s 0 e ( n + 1) + s 1 e ( n ) + s 2 e ( n − 1) 1 + T s + τ d � � s 0 = K 2 τ i T s − 1 + T s − 2 τ d � � s 1 = K 2 τ i T s s 2 = K τ d T s Smooth transfer from manual to auto mode. Bumpless transfer. 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  8. PID Controller with Filtering and T c = S c 8. Recall filtered derivative mode: � � 1 + 1 τ d s u ( t ) = K τ i s + e ( t ) 1 + τ d s N Use backward approximation 1 z 1 s ↔ T s z − 1 = T s 1 − z − 1 for all: 1 + τ d s/N ↔ − NT s 1 r 1 1 + r 1 z − 1 τ d where τ d /N r 1 = − τ d /N + T s Control law becomes: 1 − z − 1 − Nr 1 (1 − z − 1 ) S c 1 + T s 1 � � = K 1 + r 1 z − 1 R c τ i 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  9. PID Controller with Filtering and T c = S c 9. 1 − z − 1 − Nr 1 (1 − z − 1 ) S c 1 + T s 1 � � = K 1 + r 1 z − 1 R c τ i = K (1 − z − 1 )(1 + r 1 z − 1 ) + T s /τ i (1 + r 1 z − 1 ) − Nr 1 (1 − z − 1 ) 2 (1 − z − 1 )(1 + r 1 z − 1 ) Comparing the denominator and the numerator, we obtain S c ( z ) = s 0 + s 1 z − 1 + s 2 z − 2 R c ( z ) = (1 − z − 1 )(1 + r 1 z − 1 ) with 1 + T s � � s 0 = K − Nr 1 τ i 1 + T s � � � � s 1 = K r 1 + 2 N − 1 τ i s 2 = − Kr 1 (1 + N ) 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  10. PID Controller with Filtering and T c = S c 10. Recall S c ( z ) = s 0 + s 1 z − 1 + s 2 z − 2 R c ( z ) = (1 − z − 1 )(1 + r 1 z − 1 ) PID control law is given by s 0 + s 1 z − 1 + s 2 z − 2 u ( n ) = S c e ( n ) = (1 − z − 1 )(1 + r 1 z − 1 ) e ( n ) R c Cross multiplying, we obtain the control law: (1 − z − 1 )(1 + r 1 z − 1 ) u ( n ) = ( s 0 + s 1 z − 1 + s 2 z − 2 ) e ( n ) On introduction of filtering action in the derivative mode, we lose the useful property of bumpless control action. 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  11. PD Controller with Filtering and T c = S c 11. Recall 1 − z − 1 − Nr 1 (1 − z − 1 ) S c 1 + T s 1 � � = K 1 + r 1 z − 1 R c τ i Do not want integral mode. Delete second term: 1 − Nr 1 (1 − z − 1 ) S c � � = K 1 + r 1 z − 1 R c = K (1 − Nr 1 ) + r 1 (1 + N ) z − 1 1 + r 1 z − 1 Discrete time PD control law is given by (1 + r 1 z − 1 ) u ( n ) = ( s 0 + s 1 z − 1 ) e ( n ) where, s 0 = K (1 − Nr 1 ) , s 1 = Kr 1 (1 + N ) . Not in incremental form. No integral action. 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. Setpoint, Derivative, Proportional Kicks 12. • The standard PID control law has a shortcoming. • If there is a sudden change in the setpoint, – both proportional and derivative modes will introduce large jumps in the control effort, known as setpoint kick. – The large change introduced by the derivative mode is known as derivative kick. – Proportional mode could also produce a large control ef- fort, known as proportional kick. – Both derivative and proportional kicks are generally not acceptable. • Solved in a feedback configuration, to be given in the next slide. 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  13. 2-DOF PID Controller with no Setpoint Kicks 13. Recall PID control law with filtered derivative action: � � 1 + 1 τ d s u ( t ) = K τ i s + e ( t ) 1 + τ d s N With e ( t ) = r ( t ) − y ( t ) , it becomes, � � 1 + 1 τ d s u ( t ) = K τ i s + ( r ( t ) − y ( t )) 1 + τ d s N To remove setpoint kick, propose the following control law: � � K τ d s u ( t ) = � ( r ( t ) − y ( t )) − K 1 + y ( t ) 1 + τ d s 1 + τ d s � τ i s N N Setpoint kick removed. The exact structure to be explained. 13 Digital Control Kannan M. Moudgalya, Autumn 2007

  14. 2-DOF PID Controller with no Setpoint Kicks 14. Recall the control law from previous slide: � � K τ d s u ( t ) = � ( r ( t ) − y ( t )) − K 1 + y ( t ) 1 + τ d s 1 + τ d s � τ i s N N Grouping the terms involving y ( t ) , we obtain � � K τ d s 1 � r ( t ) − K u ( t ) = 1 + + y ( t ) 1 + τ d s 1 + τ d s 1 + τ d s � � � τ i s τ i s N N N This can be simplified as τ i τ d s 2 + 1 K � � u = τ i s (1 + τ d s/N ) r − K 1 + y τ i s (1 + τ d s/N ) In the form u = T c R c r − S c R c y , with T c (0) = S c (0) = K 14 Digital Control Kannan M. Moudgalya, Autumn 2007

  15. 2-DOF PID Controller with no Setpoint Kicks 15. Recall the control law that avoids setpoint kicks: � � K τ d s u ( t ) = � ( r ( t ) − y ( t )) − K 1 + y ( t ) 1 + τ d s 1 + τ d s � τ i s N N This can be implemented as, v r K u y G τ i s (1 + τ d s /N ) − − τ d s � � K 1 + 1 + τ d s/N Please read the rest of Chapter 8. 15 Digital Control Kannan M. Moudgalya, Autumn 2007

Recommend


More recommend