photonic microwave oscillators
play

Photonic microwave oscillators E. Rubiola, K. Volyanskiy, H. - PowerPoint PPT Presentation

Photonic microwave oscillators E. Rubiola, K. Volyanskiy, H. Tavernier, Y. Kouomou Chembo, R. Bendoula, P. Salzenstein, J. Cussey, X. Jouvenceau, L. Larger FEMTO-ST Institute, Besanon, France CNRS and Universit de Franche Comt Outline


  1. Photonic microwave oscillators E. Rubiola, K. Volyanskiy, H. Tavernier, Y. Kouomou Chembo, R. Bendoula, P. Salzenstein, J. Cussey, X. Jouvenceau, L. Larger FEMTO-ST Institute, Besançon, France CNRS and Université de Franche Comté Outline Phase noise and frequency stability Delay-line instrument Correlation instrument Delay line oscillator Nonlinear AM oscillations Optical resonators home page http:/ /rubiola.org

  2. Phase and amplitude noise noise 2 Time Domain Phasor Representation amplitude fluctuation v ( t ) V 0 α ( t ) [volts] V 0 normalized ampl. fluct. α ( t ) [adimensional] √ V 0 / 2 t ampl. fluct. √ ( V 0 / 2) α ( t ) phase fluctuation v ( t ) ϕ ( t ) [rad] V 0 phase fluctuation phase time (fluct.) x ( t ) [seconds] ϕ ( t ) t √ V 0 / 2 v ( t ) = V 0 [1 + α ( t )] cos [ ω 0 t + ϕ ( t )] polar coordinates v ( t ) = V 0 cos ω 0 t + n c ( t ) cos ω 0 t − n s ( t ) sin ω 0 t Cartesian coordinates under low noise approximation It holds that α ( t ) = n c ( t ) ϕ ( t ) = n s ( t ) and | n c ( t ) | ≪ V 0 and | n s ( t ) | ≪ V 0 V 0 V 0

  3. Phase noise & friends 3 processes not present random phase fluctuation random walk freq. in two-port devices S ϕ (f) f −4 b −4 S ϕ ( f ) = PSD of ϕ ( t ) power spectral density flicker freq. b −3 f −3 it is measured as S ϕ ( f ) = E { Φ ( f ) Φ ∗ ( f ) } white freq. b −2 f −2 S ϕ ( f ) ≈ � Φ ( f ) Φ ∗ ( f ) � m flicker phase. b −1 f −1 white phase b 0 L ( f ) = 1 2 S ϕ ( f ) dBc f f 2 / 2 ν 0 x S y (f) random fractional-frequency fluctuation h 2 f 2 h −2 f −2 S y = f 2 y ( t ) = ˙ ϕ ( t ) white phase random S ϕ ( f ) walk freq. ⇒ h −1 f −1 h 1 f ν 2 2 πν 0 h 0 0 flicker phase flicker freq. white freq. f Allan variance 2 σ ( τ ) y (two-sample wavelet-like variance) � 1 � 2 � freq. � σ 2 y ( τ ) = E flicker phase drift y k +1 − y k . 2 white phase flicker freq. random walk freq. white freq. approaches a half-octave bandpass filter (for white), ) 2 (2 π h 0 /2 τ 2ln(2)h −1 h −2 τ τ hence it converges for processes steeper than 1/f 6 E. Rubiola, Phase Noise and Frequency Stability in Oscillators , Cambridge 2008

  4. Amplifier white noise 4 Noise figure F, Input power P 0 P=FkT 0 B RF spectrum S( ν ) P 0 B B V 0 cos ω 0 t ∑ g N e =FkT 0 ν 0 −f ν 0 ν 0 +f ν n rf ( t ) LSB USB S φ (f) low P 0 power law 0 b 0 = FkT 0 white � b i f i S ϕ = high P 0 phase noise P 0 P 0 i = − 4 f Cascaded amplifiers (Friis formula) The (phase) noise is chiefly that of the 1st stage F 1 F 2 F 3 g 1 g 2 g 3 The Friis formula applied to phase noise + ( F 2 − 1) kT 0 b 0 = F 1 kT 0 N = F 1 kT 0 + ( F 2 − 1) kT 0 + . . . + . . . P 0 g 2 P 0 g 2 1 1 H. T. Friis, Proc. IRE 32 p.419-422, jul 1944

  5. Amplifier flicker noise 5 no carrier noise S(f) S(f) up-conversion near-dc flicker near-dc no flicker f f noise ω 0 = ? ω 0 stopband output bandwidth stopband output bandwidth t t a carrier near-dc noise v i ( t ) = V i e j ω 0 t + n ′ ( t ) + jn ′′ ( t ) the parametric nature of 1/f noise is hidden in n’ and n” substitute (careful, this hides the down-conversion) v o ( t ) = a 1 v i ( t ) + a 2 v 2 i ( t ) + . . . non-linear (parametric)amplifier expand and select the ω 0 terms � �� The noise sidebands are e j ω 0 t � n ′ ( t ) + jn ′′ ( t ) v o ( t ) = V i a 1 + 2 a 2 proportional to the input carrier get AM and PM noise α ( t ) = 2 a 2 ϕ ( t ) = 2 a 2 n ′ ( t ) n ′′ ( t ) The AM and the PM noise are a 1 a 1 independent of V i , thus of power

  6. Delay line theory 6 Rubiola-Salik-Huang-Yu-Maleki, JOSA-B 22(5) p.987–997 (2005) τ d = 1.. 100 µ s Laplace transforms P λ phase (0.2−20 km) detector laser EOM Φ ( s ) = H ϕ ( s ) Φ i ( s ) v o (t) _ ∼ µ m τ d 0 1.55 R 0 20−40 out (calib.) dB analyz. 100 | H ϕ ( f ) | 2 = 4 sin 2 ( π f τ ) FFT 10 mW microwave mW input _0 τ∼ 52 dB 90° adjust power ampli S y ( f ) = | H y ( f ) | 2 S ϕ i ( s ) Note that here one arm is a microwave cable | H y ( f ) | 2 = 4 ν 2 f 2 sin 2 ( π f τ ) 0 Laplace transforms τ mixer −s e − Φ i (s) o (s) k ϕ Φ o (s) V = Φ o (s) k ϕ Σ + −s τ Φ o (s) ) Φ i (s) = (1−e • delay –> frequency-to-phase conversion • 10 GHz, 10 μ s 10 GHz, 10 μ s works at any frequency • long delay (microseconds) is necessary for high sensitivity • the delay line must be an optical fiber fiber: attenuation 0.2 dB/km, thermal coeff. 6.8 10 -6 /K cable: attenuation 0.8 dB/m, thermal coeff. ~ 10 -3 /K

  7. White noise 7 P ( t ) = P (1 + m cos ω µ t ) intensity modulation i ( t ) = q η h ν P (1 + m cos ω µ t ) photocurrent � q η � 2 P µ = 1 2 m 2 R 0 P 2 microwave power h ν N s = 2 q 2 η shot noise h ν PR 0 thermal noise N t = FkT 0 shot thermal � 2 � 1 � � 2 � � h ν λ 2 h ν λ P + FkT 0 2 1 total white noise S ϕ 0 = m 2 (one detector) R 0 q η P η � 2 � 1 � � 2 � � h ν λ h ν λ P + FkT 0 S ϕ 0 = 16 1 total white noise (P/2 each detector) m 2 R 0 q η P η

  8. Flicker (1/f) noise 8 experimentally determined (takes skill, time and patience) amplifier GaAs: b –1 ≈ –100 to –110 dBrad 2 /Hz, SiGe: b –1 ≈ –120 dBrad 2 /Hz photodetector b –1 ≈ –120 dBrad 2 /Hz Rubiola & al. IEEE Trans. MTT (& JLT) 54 (2) p.816–820 (2006) mixer b –1 ≈ –120 dBrad 2 /Hz contamination from AM noise (delay => de-correlation => no sweet point (Rubiola-Boudot, IEEE Transact UFFC 54(5) p.926–932 (2007) optical fiber The phase flicker coefficient b –1 is about independent of power in a cascade, (b –1 ) tot adds up, regardless of the device order The Friis formula applies to white phase noise S � (f) , log-log scale + ( F 2 − 1) kT 0 b 0 = F 1 kT 0 b –1 � const. vs. P0 + . . . P 0 g 2 P 0 b –1 f –1 b 0 = FkT0 / P0 1 b 0 , higher P0 In a cascade, the 1/f noise just adds up b 0 , lower P0 m � ( b − 1 ) tot = ( b − 1 ) i f f' c f" c f c = ( b –1 / FkT0 ) P0 depends on P0 i =1

  9. Single-channel instrument 9 Ampli JDS Uniphase Photodiode EOM JDS Uniphase SiGe ampli AML laser 1,5 µm DSC40S = 8-12GHz Analyseur FFT Contrôleur 2 km Fibre 2 Km 5 dBm (HP 3561A) de polarisation RF Att FFT 3dB DC sapphire oscillator LO Ampli DC 10 dBm phase Déphaseur Coupleur 10 dB Ampli RF ISO ISO • The laser RIN can limit the instrument sensitivity • In some cases, the AM noise of the oscillator under test turns into a serious problem (got in trouble with an Anritsu synthesizer)

  10. Measurement of a sapphire oscillator 10 Mesure de bruit de phase oscillateur Saphir (Ampli Miteq) avec différents retards optiques " ;.<-*.19=.01!""> ;.<-*.19=.01&""> ! #" ;.<-*.19=.01!?> ;.<-*.19=.01#?> ;.<-*.19=.01%?> ! %" ! '" 6 ! 12781*97 # :345 ! (" ! !"" ! !#" ! !%" ! !'" ! # $ % & !" !" !" !" !" )*+,-./0.12345 • The instrument noise scales as 1/ τ , yet the blue and black plots overlap magenta, red, green => instrument noise blue, black => noise of the sapphire oscillator under test • We can measure the 1/f 3 phase noise (frequency flicker) of a 10 GHz sapphire oscillator (the lowest-noise microwave oscillator) • Low AM noise of the oscillator under test is necessary

  11. Basics of correlation spectrum measurements 11 a(t) phase noise measurements + DUT noise, a, b instrument noise x=c−a Δ Σ normal use c DUT noise analyzer c(t) − FFT background, a, b instrument noise − ideal case c = 0 no DUT y=c−b Δ Σ background, a, b instrument noise b(t) + with AM noise c ≠ 0 AM-to-DC noise S yx = E { Y X ∗ } W. K. theorem S yx = � Y X ∗ � m measured, m samples a , b and c are incorrelated expand X = C − A and Y = C − B Averaging on a sufficiently large S yx = S cc a , b , c independent number m of spectra is necessary � S yx = S cc + O ( 1 /m ) measured, m samples to reject the single-channel noise

  12. Dual-channel (correlation) instrument 12 Salik, Yu, Maleki, Rubiola, Proc. Ultrasonics-FCS Joint Conf., Montreal, Aug 2004 p.303-306 uses cross spectrum to reduce the background noise requires two fully independent channels separate lasers for RIN rejection optical-input version is not useful because of the insufficient rejection of AM noise implemented at the FEMTO-ST Institute

  13. Dual-channel (correlation) measurement 13 J.Cussey 20/02/07 Mesure200avg.txt –20 #" residual phase noise (cross-spectrum), ;<9/0=.*17.1>*-?@17.1A=9B.19C.011-/1*.@9*717.1!"DB12E?>*.1#FG5 short delay ( � � 0), m=200 averaged spectra, 6A.01H.*IE<.J1K!"F3419C.01-/1*.@9*717.1#"DB12E?>*.1%FG51 –40 %" unapplying the delay eq. with � =10 � s (2 km) –60 (" FFT –80 '" average effect FFT –100 !"" average effect S � (f), dBrad 2 /Hz –120 !#" FFT average –140 !%" effect –160 !(" –180 !'" Fourier frequency, Hz J.Cussey, feb 2007 10 1 10 2 10 3 10 4 10 5 the residual noise is clearly limited by the number of averaged spectra, m=200

  14. Measurement of the optical-fiber noise 14 • matching the delays, the oscillator phase noise cancels • this scheme gives the total noise 2 × (ampli + fiber + photodiode + ampli) + mixer thus it enables only to assess an upper bound of the fiber noise

Recommend


More recommend