photonic crystals photonic crystals and si photonics and
play

Photonic Crystals Photonic Crystals and Si Photonics and Si - PowerPoint PPT Presentation

Photonic Crystals Photonic Crystals and Si Photonics and Si Photonics Toshihiko Baba Toshihiko Baba baba@ynu.ac.jp Yokohama National University Yokohama National University http://www.dnj.ynu.ac.jp/baba-lab/babalabe.htm Photonic


  1. Photonic Crystals Photonic Crystals and Si Photonics and Si Photonics Toshihiko Baba Toshihiko Baba baba@ynu.ac.jp Yokohama National University Yokohama National University http://www.dnj.ynu.ac.jp/baba-lab/babalabe.htm

  2. � Photonic Nanostructures Photonic Crystals: PC 1D 2D 3D Bragg reflection Bragg scattering n 0 1μm 1 � m X K X U W Brillouin L Γ Γ J zone X X n 1 High Index Contrast Structure: HIC Wire Disk Mesa Total reflection n 0 n 1 0.2μm 1μm 1μm

  3. Innovation in Photonic Integration Innovation in Photonic Integration Innovation in Photonic Integration Holey fiber with small mode size by Photonic Nanostructures by Photonic Nanostructures by Photonic Nanostructures Mode size converter Nanocavity Nanolaser, nanocavity, slow light waveguide, drop switch negative refractive optics, etc. realize novel light emitters and light control devices Slowlight buffer PC and HIC Silicon photonics allow densely Slowlight integrated advanced photonic chip Resonant amplifier photodetector Nanocavity cross-connect Nanocavity Electronics Photonic crystal � -converter slowlight waveguide Nanocavity Integrated add switch isolator Nanolaser for � -converter Nanolaser signal source Silicon photonics MUX by super prism devices and superlens Photonic crystal nanocavity device T. Baba, nature photonics 1 , 22 (2007)

  4. Room Temperature CW Photonic Crystal Nanolaser Room Temperature CW Photonic Crystal Nanolaser Room Temperature CW Photonic Crystal Nanolaser Nozaki et al. EL 41 , 15843 (2005); APL 88 , 211101 (2006); OE 15 , 7506 (2007) Press released from OSA Point shift nanocavity Laser Mode 500 nm – H z + GaInAsP quantum well Photonic crystal slab active layer consisting of Airholes Airbridge Substrate membrane

  5. High Performance PC Nanolasers RT, CW Lasing (Nozaki, Kita and Baba, OE 15 , 7506 (2007)) Irradiated Power P irr [μW] 0 50 P eff ~ 2.3 μW Intensity [10 dB/div] Intensity [a.u.] 40dB 1.57 1.60 1.63 Wavelength [μm] 0 1 2 3 Effective Pump Power P eff [μW]

  6. High Performance PC Nanolasers RT, CW Lasing Single QD Lasing (LT) (Nozaki, Kita and Baba, OE 15 , 7506 (2007)) (Nomura et al., JSAP 31p-ZN-1 (2009)) Irradiated Power P irr [μW] 0 50 P eff ~ 2.3 μW Intensity [10 dB/div] Intensity [a.u.] 40dB 1.57 1.60 1.63 Wavelength [μm] 0 1 2 3 Effective Pump Power P eff [μW]

  7. Applications of Nanolaser Light Source for Photonic IC Micro-bend (Watanabe and Baba, OE 16 , 2694 (2008)) Active Passive Point-defect 200 nm microlaser Laser Air Clad. PC Slab WG Air Clad. Active Passive 1μm Micro-directional Photonic crystal coupler with μm Micro-branch line defect waveguides order length Chemical and Bio-Sensing Cavity QED (Purcell enhancement, Rabi splitting, (Kita et al., OE 16 , 8174 (2008); IPNRA , JMB3 (2009)) single photon emission, quantum information) 5 5 n env 1.315 1.335 1.355 Normalized Intensity [a.u.] Normalized Intensity [a.u.] = 1.306 1.325 1.345 Glutaraldehyde (Baba et al. APL 85 , 3989 (2004); Ota et al. APL 94, 033102 (2009)) 4 4 Modification 3 RT, P irr = 0.7 P th 1 3 BSA Normalized Intensity Wafer 0.7 Binding 2 2 0.5 < 26 pm 1 1 PC w/o cavity 0.3 0 Point-shift 0 1615 1625 1635 nanocavity 1586 1588 1590 1592 0.2 Wavelength [nm] @ � = � mode Wavelength [nm] Included in MEXT GCOE program operated by 0.1 0 1 2 3 4 5 YNU and collaborated with Univ. Oulu Time [ns]

  8. High-Power Singlemode PC Bandedge Lasers (Noda et al., Science 293 , 1123 (2001); Nature 441 , 946 (2006); Science 319 , 445 (2008); JSAP 31a-ZN-1 (2009)) 2D DFB PC allows over 30 W singlemode lasing in large areas Narrow beam profiles controllable by PC engineering Ring shape FFP applicable to photon twizer and tight focusing over the diffraction limit

  9. Fabrication of 3D Photonic Crystals Top Down Approach (Micromanipulation) Bottom Up Approach (Lithographic Tech.) (Aoki et al. Nat. Mat. 2 , 117 (2003); Nat. Photon. 2 , 688 (2008)) (Shoji et al. APL 76 , 2668 (2000); Mizeikiz et al. OL 29 , 2061 (2004))

  10. PC Line Defect Waveguide Slow light in (after Baba et al., EL 35 , 654 (1999)) Channel photonic crystals Si Air 1 μm Si Observation of slow light (after Notomi et al., PRL 87 , 253902 (2001)) 80 From F-P Group Index n g resonance 60 40 From modulation phase shift 20 0 1.550 1.555 1.560 1.565 T. Baba, Nature Photonics 2 , 465 (2008) Wavelength [ � m]

  11. � Photonic Crystal Coupled Waveguides (PCCW) (Mori et al. OE 13 , 9398 (2005); Kawasaki et al. OE 15, 10274 (2007)) Branch Confluence Coupled Waveguide Output Input WG WG 1 μm L = 192 μ m 2 r 1 = 0.24 � 0.26 μ m a = 0.46 μ m 2 r 2 = 0.34 � 0.38 μm 0.30 Slow e n Even Light i L � a /2 � c t h g i L Band shift in Odd chirped structure 0.29 0.3 0.4 0.5 k k k k [2 � / a ]

  12. Tunable Delay in P [mW], x [ μ m] = 7, 140 Δτ [ps] = 3.2 2.3 Slow Light Pulse 7, 151 Normalized Cross-Correlation Intensity [a.u.] 2.1 6, 164 2.2 7, 169 3.3 (Baba et al., OE 16 , 9245 (2008); 31, 19 3.3 Baba et al., Nature Photon. 2 , 465 (2008); 31, 26 3.4 Adachi et al., OSA SL, SWA1 (2009)) 35, 35 4.1 40, 37 2.2 12, 189 Slow chirp Fast chirp 2.3 24, 171 3.0 37, 172 Heating 3.2 27, 163 6.4 27, 154 4.7 27, 151 Δ t Δ t 5.2 37, 147 4.5 37, 144 0 0 4.1 38, 140 Δ � Δ � 3.5 52, 140 Intensity Intensity Δ T 2.3 58, 140 0 20 40 60 80 100 Delay [ps] 0 0 Δ t Δ t 74 ps

  13. Optical Nonlinearity in LVLD Pulse (Hamachi, Kubo, Baba, OL 34 , 1072 (2009)) Two Photon Absorption Self Phase Modulation n g ~ 8 No Device n g ~ 30 Output Peak Intensity P out [W] 1.0 � eff [cm/GW] = 0 3 Transmission [5 dB/div] P in [W] = 1.89 n g ~ 8 10 0.75 0.30 25 0.12 0.5 50 n g ~ 30 0 0 0.5 1.0 1.5 2.0 1.551 1.554 1.551 1.554 1.551 1.554 Input Peak Intensity P in [W] Wavelength λ [ μ m] Nonlinearity is enhanced by SL pulse in LVLD waveguide (350 � m length) TPA scales with n g 2 and >40-fold higher than Si photonic wire waveguide

  14. PC Nanocavity-Waveguide Coupled System Ultrahigh-Q Nanocavity (Tanabe et al. Nat. Photon. 1 , 49 (2007); Takahashi et al. OE 15 , 17206 (2007)) Q factor up to 3,000,000 and photon storage of 2 ns Nonlinear bistable switching Dynamic Tuning (Notomi et al. OE 13 , 2678 (2005); OL 30 , 2575 (2005)) (Tanaka et al. Nat. Mat. � , 862 (2007)) Stopping optical pulse observed Carrier-induced bistability, τ =100ps, W th =10fJ

  15. Negative Refraction in Negative Refraction in Photonic Crystals Photonic Crystals

  16. Functions Predicted from Dispersion Surfaces (after Kosaka et al., PRB 58 , 10096 (1998)) 1 2 3 0.53 0.56 0.2 Isotropic 0.54 0.6 Propagation 0.1 0.55 0.64 Super- Collimation 4 5 6 0.74 0.74 0.8 0.76 0.72 0.82 0.72 0.7 0.7 Slow Super Super light prism lens

  17. Observation of Negative Refraction (Matsumoto et al., APL 91 , 091117 (2007)) 24º Input 10 μm WG Plot: Experiment, Line: FDTD 65 Si Slab 1 μm m m μ μ PC 0 Deflection Angle θ [º] 9 60 3 2 . . 0 0 = r 2 m μ 55 7 1 μm 2 λ = 1.37 μm . 0 Si Slab 50 PC 45 θ 1.50 1.55 1.60 Wavelength λ [μm]

  18. Light Focusing in PC Superlens (Matsumoto, et al. OL 31, 2776 (2006)) � = 1.305 μm 0.5 μm 0 5 L [ � m] 10 PC slab superlens Intensity [a.u.] 15 3 2 1 0 1 Intensity [a.u.] 2.0 � m 0 -10 0 10 Position [ � m]

  19. � Photonic Nanostructures Photonic Crystals: PC 1D 2D 3D Bragg reflection Bragg scattering n 0 1μm 1 � m X K X U W Brillouin L Γ Γ J zone X X n 1 High Index Contrast Structure: HIC Wire Disk Mesa Total reflection n 0 n 1 0.2μm 1μm 1μm

  20. Photonic Wire Waveguide Elements Bend Y Branch and H-Tree (Yamada et al. IEEE JSTQE 12, 1371 (2006)) (Sakai et al. JJAP 40, L383 (2001)) (Sakai et al. IEICE Trans.E85-C, 1033 (2002); JJAP 41, L1461 (2002)) SEM NFP � = 1.55 � m NFP � = 1.55 � m 10 � m Spot Size Converter Grating Coupler MZ Interferometer Intersection (Bogaerts et al. OE 12, 1583 (2004)) (Tsuchizawa et al. EL 38, 1669 (2002)) (Ohno et al., JJAP 44, 5322 (2005)) (Fukazawa et al. JJAP 43 , 646 (2004)) N = 50 �� 30 dB � L = 17.2 � m 1.6 μm � 0.4 dB 10.4 μm MMI Coupler 5 � m Directional Coupler Microring (Yamada et al. IEICE Trans.E87-C, 351 (2004)) (Yamada et al., IEEE PTL 18, 585 (2005)) (Xiao et al., JLT 26 , 228 (2008))

  21. Si Photonics Functional Devices III-V Hybrid Laser Modulator Epitaxial Ge Detector (Fang et al., OE 14, 9203 (2006)) (Liao et al., OE 13, 3129 (2005)) (Liu et al. APL 87, 011110 (2005)) 20 GHz bandwidth 10 Gbps Eye Pattern Delay Line and Optical Buffer Nonlinear Elements (FWM, Raman, TPA, SPM...) (Xia et al., Nature Photon. 1, 65 (2007)) MUX/DEMUX (AWG) (Yamada et al., IEEE PTL 18, 1046 (2006)) (Fukazawa et al., JJAP 43, L673 (2004); JJAP 45, 6126 (2006)) 0 Transmission [dB] � 10 � 20 � 30 10 μm 1.50 1.55 1.60 Wavelength [ μ m]

Recommend


More recommend