patterns in trees
play

Patterns in Trees Thomas Klausner TU Wien Joint work with Michael - PowerPoint PPT Presentation

Patterns in Trees Thomas Klausner TU Wien Joint work with Michael Drmota INRIA Rocquencourt, December 9, 2002 Supported by the Austrian Science Fund, Project S8302-MAT. Outline Present assumptions and basic techniques. Define patterns.


  1. Patterns in Trees Thomas Klausner TU Wien Joint work with Michael Drmota INRIA Rocquencourt, December 9, 2002 Supported by the Austrian Science Fund, Project S8302-MAT.

  2. Outline • Present assumptions and basic techniques. • Define patterns. • Find representations as combinatorial objects. • Convert to corresponding generating functions. • Compute asymptotics. 1

  3. 1. Basics Labelled universe Counting of combinatorical structures by exponential generating functions z n � p ( z ) = p n n ! First model: All trees of size n have equal probability. 2

  4. Rooted Trees Construction (rooted): . . . r r r r r r r r r r Tree function: � � 1 + p ( z ) + p ( z ) 2 + p ( z ) 3 = ze p ( z ) p ( z ) = z + . . . 2! 3! Explicit number of rooted trees of size n via e.g. Lagrange in- version formula p n = n n − 1 3

  5. Planted Rooted Trees Sometimes helpful: planted rooted trees. Node degree does not change during construction. . . . p p p p p p p p p p Results in same function p ( z ). First order asymptotics √ √ p ( z ) = 1 − 2 1 − ez + O ( z ) 4

  6. Bivariate Generating Functions Mark special properties with a second variable u E.g.: Nodes with particular degree k + 1 ze p − p k k ! + up k k ! = ze p + ( u − 1) p k p = k ! Possible to find limit distribution and compute parameters. In this case [Drmota and Gittenberger 1997]: asymptotically Gaus- 1 σ 2 sian with mean µ k n and variance k n , where m k = ek ! und σ k = − 1+( k − 2) 2 1 e 2 ( k − 1)! 2 + e ( k − 1)! 5

  7. 2. Patterns What is a pattern? In our case, connected sub-tree M . Easy example: 6

  8. How to Mark a Pattern? More difficult than with single nodes. Split in parts: t 1 t 3 t 4 t 2 Aim: Describe patterns by generating functions for each part → system of functional equations. 7

  9. Proposition (Planted Rooted Trees) Let M be a pattern. Then there exist L auxiliary functions a j ( x, u ) (1 ≤ j ≤ L ) with L � p ( x, u ) = a j ( x, u ) j =1 and polynomials P j ( y 1 , . . . , y L , u ) (1 ≤ j ≤ L − 1) with non- negative coefficients such that a 1 ( x, u ) = x · P 1 ( a 1 ( x, u ) , . . . , a L ( x, u ) , u ) . . . a L − 1 ( x, u ) = x · P L − 1 ( a 1 ( x, u ) , . . . , a L ( x, u ) , u ) (1) L − 1 a L ( x, u ) = xe a 1 ( x,u )+ ··· + a L ( x,u ) − x � P j ( a 1 ( x, u ) , . . . , a L ( x, u ) , 1) . j =1 8

  10. Notation to Describe Patterns ◦ is a (planted) root node, × the Cartesian product, ∩ the inter- . section, ∪ the union, and ∪ the disjunct union. . × binds stronger than either of ∩ , ∪ , and ∪ . Note: no immediate one-to-one correspondance to the generat- ing functions (relative probabilities, u ). 9

  11. t 2 t 1 t 3 t 4 p p p p p p p p t 2 t 1 p t 1 = {◦} × p × p × p × p, t 2 = {◦} × p × p × p, t 3 = {◦} × t 2 × p, = t 4 {◦} × t 1 × p. 10

  12. 3. Convert to Functions • Standardise: no duplicate descriptions of the same structure • Find coefficients • Sprinkle with u 11

  13. Standard Form Each tree a j represented as disjoint union of trees of the kind {◦} × a l 1 × · · · × a l d , (2) ( d = degree of the root of a j ). 12

  14. Standardising the Functions Build intersections (symbolically): = x 1 {◦} × x 1 , 1 × · · · × x 1 ,l x 2 = {◦} × x 2 , 1 × · · · × x 2 ,l � x 1 ∩ x 2 = {◦} × ( x 1 ,m 1 ∩ x 2 ,n 1 ) × · · · × ( x 1 ,m l ∩ x 2 ,n l ) { m 1 ,...,m l } = { 1 ,...,l } { n 1 ,...,n l } = { 1 ,...,l } . x 1 ∪ x 2 = x 1 ∪ x 2 \ ( x 1 ∩ x 2 ) 13

  15. Intersection Example t 1 = {◦} × p × p × p × p, t 2 = {◦} × p × p × p, t 3 = {◦} × t 2 × p, t 4 = {◦} × t 1 × p. Only one non-empty intersection: t 3 ∩ t 4 = {◦} × ( t 1 ∩ t 2 ) × p ∪ {◦} × t 1 × t 2 = = {◦} × t 1 × t 2 . 14

  16. Example in Standardised Form a 1 = t 3 \ ( t 3 ∩ t 4 ) = {◦} × a 5 × ( a 1 ∪ a 2 ∪ a 3 ∪ a 5 ∪ a 6 ) , a 2 = t 4 \ ( t 3 ∩ t 4 ) = {◦} × a 4 × ( a 1 ∪ a 2 ∪ a 3 ∪ a 4 ∪ a 6 ) , = t 3 ∩ t 4 = {◦} × a 4 × a 5 , a 3 6 6 6 6 � � � � = t 1 = {◦} × a 4 a i × a i × a i × a i , i =1 i =1 i =1 i =1 6 6 6 � � � = t 2 = {◦} × a 5 a i × a i × a i , i =1 i =1 i =1 a 6 = p \ ( a 1 ∪ · · · ∪ a 5 ) = 6 � = {◦} ∪ {◦} × a i ∪ {◦} × ( a 1 ∪ a 2 ∪ a 3 ∪ a 6 ) × ( a 1 ∪ a 2 ∪ a 3 ∪ a 6 ) ∪ i =1   ∞ 6 6 6   � � � �   ∪ {◦} × a i × a i × · · · × a i .     n =5  i =1 i =1 i =1  � �� � n 15

  17. Coefficients A j,l 1 ,...,l L ,k := number of possible configurations of type (2) ( l i sub-trees of type a i , k new occurrences of M ) Coefficients are computed by simple combinatorics ( k is implicitly given by l i ). 16

  18. Resulting Functions A j,l 1 ,...,l L ,k � l 1 ! · · · l L ! y l 1 1 · · · y l L L u k , P j ( y 1 , . . . , y L , u ) = 1 ≤ j ≤ L − 1 l 1 ,...,l L ≥ 0 L − 1 � P L ( y 1 , . . . , y L ) = e y 1 + ··· + y L − P j ( y 1 , . . . , y L , 1) . j =1 a j ( x, u ) = x · P j ( a 1 ( x, u ) , . . . , a L ( x, u ) , u ) . → proposed structure of the system of functional equations (1). 17

  19. How to Find k = k ( l 1 , . . . , l L ) New patterns occur when all necessary sub-trees are attached to a node of proper degree. In example, three cases: 1. Node of degree three with a t 1 and t 2 . 2. Node of degree four with a t 4 attached. Each t 4 produces another pattern. 3. Node of degree five with a t 3 attached. Each t 3 produces another pattern. 18

  20. Coefficients in Example P 1 = y 5 ( y 1 + y 2 + y 3 + y 6 ) + 1 2! y 2 5 , P 2 = y 4 ( y 1 + y 2 + y 3 + y 6 ) + 1 2! y 2 4 , P 3 = uy 4 y 5 , P 4 = ( uy 1 + y 2 + uy 3 + y 4 + y 5 + y 6 ) 4 , 4! P 5 = ( y 1 + uy 2 + uy 3 + y 4 + y 5 + y 6 ) 3 3! 19

  21. Coefficients in Example (cont’d) xa 5 ( a 1 + a 2 + a 3 + a 6 ) + x 1 2! a 2 a 1 ( x, u ) = a 1 = 5 , xa 4 ( a 1 + a 2 + a 3 + a 6 ) + x 1 2! a 2 a 2 ( x, u ) = a 2 = 4 , a 3 ( x, u ) = a 3 = xua 4 a 5 , x ( ua 1 + a 2 + ua 3 + a 4 + a 5 + a 6 ) 4 a 4 ( x, u ) = a 4 = , 4! x ( a 1 + ua 2 + ua 3 + a 4 + a 5 + a 6 ) 3 a 5 ( x, u ) = a 5 = , 3! 6 a i + x ( a 1 + a 2 + a 3 + a 6 ) 2 � a 6 ( x, u ) = a 6 = x + x + 2! i =1   n 6 ∞ 1 � � + x a i .   n ! n =5 i =1 20

  22. Strong Connectivity a 6 depends on itself and all others (last term). Each a i depends on a 6 either directly, or through a chain to a leaf (see pattern). 21

  23. Proposition (Rooted Trees) There exists an analytic function G ( x, u, a 1 , . . . , a L ) with non-negative Taylor coefficients such that r ( x, u ) = G ( x, u, a 1 ( x, u ) , . . . , a L ( x, u )) . where the a i were defined earlier. 22

  24. Counting Patterns in Rooted Trees For the example: r 0 := xe p − xp 5 5! − xp 4 4! − xp 3 3! . (“uninteresting” sub-trees) Marks in sub-trees already counted correctly, only have to dis- tribute marks for newly appearing patterns. 23

  25. Newly Appearing Patterns j =1 a e j � 6 � j u e 1 + e 3 r = r ( x, u ) = r 0 + x + � e i ! � e i =5 e i ≥ 0 j =1 a e j j =1 a e j � 6 � 6 � j � j u e 2 + e 3 u e 4 e 5 + x + x � e i ! � e i ! � e i =3 � e i =4 e i ≥ 0 e i ≥ 0 24

  26. a c b

  27. Unrooted Trees t n,m = r n,m /n 25

  28. 4. Asymptotics Use Drmota’s Theorem on systems of functional equations. ∗ Paraphrased: Under certain conditions for the system of equa- tions, the coefficients asymptotically follow a Gaussian distribu- tion with mean and variance asymptotically proportional to n . Often the difficult part: Finding the singularity ∗ M. Drmota, Systems of Functional Equations . Random Structures and Algorithms 10, 103-124, 1997. 26

  29. For Our Case Singularity known: 1 e To find: left eigenvector (for the eigenvalue one) of the derivative of the functional matrix with respect to the functions Application of theorem then gives expectation for examples as 384 e − 19 12 e (576 e 3 + 24 e 2 − 25) = 0 . 0026803 . . . 27

  30. Possible Future Extensions • Different kind of trees or tree distributions • Logical terms using ∨ , ∧ , ¬ , ∀ and ∃ describing more general patterns. • Does a 0-1-law hold? 28

Recommend


More recommend