optimizing dynamic power flow
play

Optimizing Dynamic Power Flow Anders Rantzer Automatic Control LTH - PowerPoint PPT Presentation

Optimizing Dynamic Power Flow Anders Rantzer Automatic Control LTH Lund Universty Anders Rantzer Optimizing Dynamic Power Flow Combine with water power reservoirs in northern Sweden Use wind farms to stabilize network AEOLUS project:


  1. Optimizing Dynamic Power Flow Anders Rantzer Automatic Control LTH Lund Universty Anders Rantzer Optimizing Dynamic Power Flow

  2. Combine with water power reservoirs in northern Sweden Use wind farms to stabilize network AEOLUS project: Distributed coordination of wind turbines Anders Rantzer Optimizing Dynamic Power Flow

  3. Outline Problem Statements • ○ Positive Quadratic Programming ○ Optimizing Static Power Flow ○ Dynamic Positive Programming ○ Optimizing Dynamic Power Flow Anders Rantzer Optimizing Dynamic Power Flow

  4. A Power Transmission Network I 1 I 4 V 1 V 4 I 3 I 2 V 2 V 3       I 1 ( s ) Y 12 + Y 14 − Y 12 − Y 14 V 1 ( s ) 0 I 2 ( s ) − Y 21 Y 21 + Y 23 + Y 24 − Y 23 − Y 24 V 2 ( s )       =       I 3 ( s ) 0 − Y 32 Y 32 0 V 3 ( s )       I 4 ( s ) − Y 41 − Y 42 Y 41 + Y 42 V 4 ( s ) 0 � �� � � �� � � �� � I ( s ) Y ( s ) V ( s ) Potential differences drive currents (voltage*current = power) Price differences drive commodity flows (price*amount = value) Anders Rantzer Optimizing Dynamic Power Flow

  5. An Optimal Flow Problem for AC Power I 1 I 4 V 1 V 4 I k ∈ C V k ∈ C I 3 I 2 V 2 V 3 Re � k I ∗ Minimize k V k P k ≤ Re ( I ∗ subject to I = YV and k V k ) ≤ P k Q k ≤ Im ( I ∗ k V k ) ≤ Q k v k ≤ � V k � ≤ v k for k = 1,...,4 (Convex relaxation by Lavaei/Low inspired this talk.) Anders Rantzer Optimizing Dynamic Power Flow

  6. Problem I: Optimizing Static Power Flow i 1 i 4 v 1 v 4 i k ∈ R v k ∈ R i 3 i 2 v 2 v 3 � Minimize k i k v k subject to i = Yv and i k v k ≤ p k ( v k − v j ) 2 ≤ c kj v k ≤ v k ≤ v k for all k , j Notice: p k negative at loads, positive at generators. Motivation: 1) Real DC networks. 2) Approximation of AC. 3) Water tanks. 4) Supply chains Anders Rantzer Optimizing Dynamic Power Flow

  7. Further questions regarding Problem I Are there distributed solution algorithms? Will market mechanisms find the optimum? Optimize transition when demand changes! (Problem II) Anders Rantzer Optimizing Dynamic Power Flow

  8. Problem II: Optimizing Dynamic Power Flow i 1 i 4 v 1 v 4 i k ( t ) ∈ R v k ( t ) ∈ R i 3 i 2 v 2 v 3 � ∞ � Minimize 0 i k ( t ) v k ( t ) dt k subject to I ( s ) = Y ( s ) V ( s ) and i k ( t ) v k ( t ) ≤ p k � v k ( t ) − v j ( t )� 2 ≤ c kj v k ≤ v k ( t ) ≤ v k for all k , j Convexly solvable when off-diagonal elements of Y ( s ) have non-negative impulse response! (e.g. ramp dynamics) Anders Rantzer Optimizing Dynamic Power Flow

  9. Outline ○ Problem Statements Positive Quadratic Programming • ○ Optimizing Static Power Flow ○ Dynamic Positive Programming ○ Optimizing Dynamic Power Flow Anders Rantzer Optimizing Dynamic Power Flow

  10. Positive Quadratic Programming Given A 0 ,..., A K ∈ R n � n with nonnegative off-diagonal entries and b 1 ,..., b K ∈ R , the following equality holds: x T A 0 x max = max trace ( A 0 X ) x ∈ R n subject to subject to X � 0 + x T A k x ≥ b k trace ( A k X ) ≥ b k k = 1,..., K k = 1,..., K Proof   � x 1 � 2 ∗ ...   If X =  maximizes the right hand side,  � x n � 2 ∗   x 1 .  .  then x =  maximizes the left. .  x n [Kim/Kojima, 2003] Anders Rantzer Optimizing Dynamic Power Flow

  11. Positive Quadratic Programming Given A 0 ,..., A K ∈ R n � n with nonnegative off-diagonal entries and b 1 ,..., b K ∈ R , the following equality holds: x T A 0 x max = max trace ( A 0 X ) x ∈ R n subject to subject to X � 0 + x T A k x ≥ b k trace ( A k X ) ≥ b k k = 1,..., K k = 1,..., K Proof   � x 1 � 2 ∗ ...   If X =  maximizes the right hand side,  � x n � 2 ∗   x 1 .  .  then x =  maximizes the left. .  x n [Kim/Kojima, 2003] Anders Rantzer Optimizing Dynamic Power Flow

  12. Outline ○ Problem Statements ○ Positive Quadratic Programming Optimizing Static Power Flow • ○ Dynamic Positive Programming ○ Optimizing Dynamic Power Flow Anders Rantzer Optimizing Dynamic Power Flow

  13. An Optimal Flow Problem for DC Power i 1 i 4 v 1 v 4 i 3 i 2 v 2 v 3 Minimize i 3 v 3 + i 4 v 4 subject to i = Yv and i 1 v 1 ≤ p 1 i 2 v 2 ≤ p 2 v k ≤ v k ≤ v k for k = 1,...,4 Anders Rantzer Optimizing Dynamic Power Flow

  14. An Optimal Flow Problem for DC Power i 1 i 4 v 1 v 4 i 3 i 2 v 2 v 3 Minimize (− y 32 v 2 + y 32 v 3 ) v 3 + (− y 41 v 1 − y 42 v 2 + y 41 v 4 + y 42 v 4 ) v 4 ( y 12 v 1 + y 14 v 1 − y 12 v 2 − y 14 v 4 ) v 1 ≤ p 1 subject to (− y 21 v 1 + y 21 v 2 + y 23 v 2 + y 24 v 2 − y 23 v 3 − y 24 v 4 ) v 2 ≤ p 2 � v k � 2 ≤ � v k � 2 ≤ � v k � 2 Note: The problem is convex in � v 1 � 2 ,..., � v 4 � 2 ! Anders Rantzer Optimizing Dynamic Power Flow

  15. An Optimal Flow Problem for DC Power i 1 i 4 v 1 v 4 i 3 i 2 v 2 v 3 Minimize (− y 32 v 2 + y 32 v 3 ) v 3 + (− y 41 v 1 − y 42 v 2 + y 41 v 4 + y 42 v 4 ) v 4 ( y 12 v 1 + y 14 v 1 − y 12 v 2 − y 14 v 4 ) v 1 ≤ p 1 subject to (− y 21 v 1 + y 21 v 2 + y 23 v 2 + y 24 v 2 − y 23 v 3 − y 24 v 4 ) v 2 ≤ p 2 � v k � 2 ≤ � v k � 2 ≤ � v k � 2 Note: The problem is convex in � v 1 � 2 ,..., � v 4 � 2 ! Anders Rantzer Optimizing Dynamic Power Flow

  16. Dual Positive Quadratic Programming Given A 0 ,..., A K ∈ R n � n with nonnegative off-diagonal entries and b 1 ,..., b K ∈ R , the following equality holds: x T A 0 x − � max = min k λ k b k x ∈ R n subject to subject to λ 1 ,..., λ K ≥ 0 + x T A k x ≥ b k 0 � A 0 + � k λ k A k k = 1,..., K Interpretation: In the power flow example, λ k is the price of power at node k . Anders Rantzer Optimizing Dynamic Power Flow

  17. Dual Positive Quadratic Programming Given A 0 ,..., A K ∈ R n � n with nonnegative off-diagonal entries and b 1 ,..., b K ∈ R , the following equality holds: x T A 0 x − � max = min k λ k b k x ∈ R n subject to subject to λ 1 ,..., λ K ≥ 0 + x T A k x ≥ b k 0 � A 0 + � k λ k A k k = 1,..., K Interpretation: In the power flow example, λ k is the price of power at node k . Anders Rantzer Optimizing Dynamic Power Flow

  18. Dual Positive Quadratic Programming Given A 0 ,..., A K ∈ R n � n with nonnegative off-diagonal entries and b 1 ,..., b K ∈ R , the following equality holds: − � x T A 0 x max = min k λ k b k x ∈ R n subject to subject to λ 1 ,..., λ K ≥ 0 + x T A k x ≥ b k 0 � A 0 + � k λ k A k k = 1,..., K Distributed solution: The agent at node k bying power over node jk compares prices at both ends and adjusts for power losses in the link. Anders Rantzer Optimizing Dynamic Power Flow

  19. Outline ○ Problem Statements ○ Positive Quadratic Programming ○ Optimizing Static Power Flow Dynamic Positive Programming • ○ Optimizing Dynamic Power Flow Anders Rantzer Optimizing Dynamic Power Flow

  20. Positive systems have nonnegative impulse response If the matrices A , B , C and D have nonnegative coefficients except for the diagonal of A , then the system dx dt = Ax + Bu y = Cx + Du has non-negative impulse response. Example: L di dt = − Ri + v inductive transmission line y = i Anders Rantzer Optimizing Dynamic Power Flow

  21. Positive systems have nonnegative impulse response If the matrices A , B , C and D have nonnegative coefficients except for the diagonal of A , then the system dx dt = Ax + Bu y = Cx + Du has non-negative impulse response. Example: dv dt = − α v + u generator ramp dynamics y = v Anders Rantzer Optimizing Dynamic Power Flow

  22. Positive systems Suppose the matrices A , B , C and D have nonnegative coefficients except for the diagonal of A : dx dt = Ax + Bu y = Cx + Du Properties: Stability verified by linear or diagonal Lyapunov functions. Maximal gain for zero frequency: � C ( i ω I − A ) − 1 B + D � = � D − CA − 1 B � max ω Anders Rantzer Optimizing Dynamic Power Flow

  23. Dynamic Positive Programming Let A 0 ( s ) ,..., A K ( s ) have off-diagonal entries with nonnegative impulse response and b 1 ,..., b K ∈ R . Then the following equality holds: � ∞ −∞ x ( i ω ) ∗ A 0 ( i ω ) x ( i ω ) d ω max � ∞ −∞ x ( i ω ) ∗ A k ( i ω ) x ( i ω ) d ω ≥ b k subject to x ∈ H n + , k = 1,..., K � ∞ = max −∞ trace ( A 0 X ) d ω � ∞ subject to −∞ trace ( A k X ) d ω ≥ b k X ( i ω ) � 0, k = 1,..., K where H n + consists of all stable transfer functions with nonnegative impulse response. Anders Rantzer Optimizing Dynamic Power Flow

  24. Positive Quadratic Programming Let A 0 ( s ) ,..., A K ( s ) have off-diagonal entries with nonnegative impulse response and b 1 ,..., b K ∈ R . Then the following equality holds: � ∞ � ∞ −∞ x ∗ A 0 xd ω max = max −∞ trace ( A 0 X ) d ω x ∈ H n X � 0 subject to subject to + � ∞ � ∞ −∞ x ∗ A k xd ω ≥ b k −∞ trace ( A k X ) d ω ≥ b k k = 1,... , K k = 1,... , K Proof   � x 1 � 2 ∗ ...   If X =  maximizes the right hand side,  � x n � 2 ∗   x 1 .   . then x =  maximizes the left. .  x n Anders Rantzer Optimizing Dynamic Power Flow

Recommend


More recommend