flow visualization overview flow visualization 1
play

Flow Visualization Overview: Flow Visualization (1) Introduction, - PDF document

Flow Visualization Overview: Flow Visualization (1) Introduction, overview Flow data Simulation vs. measurement vs. modelling 2D vs. surfaces vs. 3D Steady vs time-dependent flow Direct vs. indirect flow visualization Experimental flow


  1. Flow Visualization

  2. Overview: Flow Visualization (1) Introduction, overview Flow data Simulation vs. measurement vs. modelling 2D vs. surfaces vs. 3D Steady vs time-dependent flow Direct vs. indirect flow visualization Experimental flow visualization Basic possibilities PIV (Particle Image Velocimetry) + Example Eduard Gröller, Helwig Hauser 2

  3. Overview: Flow Visualization (2) Visualization of models Flow visualization with arrows Numerical integration Euler-integration Runge-Kutta-integration Streamlines In 2D Particle paths In 3D, sweeps Illuminated streamlines Streamline placement Eduard Gröller, Helwig Hauser 3

  4. Overview: Flow Visualization (3) Flow visualization with integral objects Streamribbons, Streamsurfaces, stream arrows Line integral convolution Algorithm Examples, alternatives Glyphs & icons, flow topology Eduard Gröller, Helwig Hauser 4

  5. Flow Visualization Introduction: FlowVis = visualization of flows Visualization of change information Typically: more than 3 data dimensions General overview: even more difficult Flow data: nD  nD data, 1D 2 /2D 2 /nD 2 (models), 2D 2 /3D 2 (simulations, measurements) Vector data (nD) in nD data space User goals: Overview vs. details (with context) Eduard Gröller, Helwig Hauser 5

  6. Flow Data Where do the data come from: Flow simulation: Airplane- / ship- / car-design Weather simulation (air-, sea-flows) Medicine (blood flows, etc.) Flow measurements: Wind tunnel, fluid tunnel Schlieren-, shadow-technique Flow models: Differential equation systems (ODE) (dynamical systems) Eduard Gröller, Helwig Hauser 6

  7. Data Source – Examples 1/2 Eduard Gröller, Helwig Hauser 7

  8. Data Source – Examples 2/2 Eduard Gröller, Helwig Hauser 8

  9. Comparison with Reality Experiment Simulation Eduard Gröller, Helwig Hauser 9

  10. 2D vs. Surfaces vs. 3D 2D-Flow visualization 2D  2D-Flows Models, slice flows (2D out of 3D) Visualization of surface flows 3D-flows around “obstacles” Boundary flows on surfaces (2D) 3D-Flow visualization 3D  3D-flows Simulations, 3D-models Eduard Gröller, Helwig Hauser 10

  11. 2D/Surfaces/3D – Examples 3D Surface 2D Eduard Gröller, Helwig Hauser 11

  12. Steady vs. Time-Dependent Flows Steady (time-independent) flows: Flow static over time v ( x ): R n  R n , e.g., laminar flows Simpler interrelationship Time-dependent (unsteady) flows: Flow itself changes over time v ( x ,t): R n  R 1  R n , e.g., turbulent flows More complex interrelationship Eduard Gröller, Helwig Hauser 12

  13. Time-Dependent vs. Steady Flow Eduard Gröller, Helwig Hauser 13

  14. Direct vs. Indirect Flow Visualization Direct flow visualization: Overview on current flow state Visualization of vectors Arrow plots, smearing techniques Indirect flow visualization: Usage of intermediate representation: vector-field integration over time Visualization of temporal evolution Streamlines, streamsurfaces Eduard Gröller, Helwig Hauser 14

  15. Direct vs. Indirect Flow Vis. – Example Eduard Gröller, Helwig Hauser 15

  16. Experimental Flow Visualization Optical Methods, etc.

  17. With Smoke rsp. Color Injection Injection of color, smoke, particles Optical methods: Schlieren, shadows Eduard Gröller, Helwig Hauser 17

  18. Example: Car-Design Ferrari-model, so-called five- hole probe (no back flows) Eduard Gröller, Helwig Hauser 18

  19. PIV: Particle Image Velocimetry Laser + correlation analysis: Real flow, e.g., in wind tunnel Injection of particles (as uniform as possible) At interesting locations: 2-times fast illumination with laser-slice Image capture (high-speed camera), then correlation analysis of particles Vector calculation / reconstruction, typically only 2D-vectors Eduard Gröller, Helwig Hauser 19

  20. PIV - Measurements Setup and typical result: Eduard Gröller, Helwig Hauser 20

  21. Example: Wing-Tip Vortex Problem: Air behind airplanes is turbulent Eduard Gröller, Helwig Hauser 21

  22. Visualization of Models Dynamical Systems

  23. Dynamical Systems Visualization Differences: Flow analytically def.: d x /dt = v ( x ) Navier-Stokes equations E.G.: Lorenz-system: dx/dt =  (y-x) dy/dt = rx-y-xz dz/dt = xy-bz Larger variety in data: 2D, 3D, nD Sometimes no natural constraints like non- compressibility or similar Eduard Gröller, Helwig Hauser 23

  24. Visualization of Models Sketchy, “hand drawn” Eduard Gröller, Helwig Hauser 24

  25. Visualization of 3D Models Eduard Gröller, Helwig Hauser 25

  26. Flow Visualization with Arrows Hedgehog plots, etc.

  27. Flow Visualization with Arrows Aspects: Direct Flow Visualization Normalized arrows vs. scaling with velocity 2D: quite usable, 3D: often problematic Sometimes limited expressivity (temporal component missing) Often used! Eduard Gröller, Helwig Hauser 27

  28. Arrows in 2D Scaled arrows vs. color-coded arrows Eduard Gröller, Helwig Hauser 28

  29. Arrows in 3D Following problems: Ambiguity Perspective Shortening 1D-objects in 3D: difficult spatial perception Visual clutter Improvement: 3D-arrows (help to a certain extent) Eduard Gröller, Helwig Hauser 29

  30. Arrows in 3D Compromise: Arrows only in slices Eduard Gröller, Helwig Hauser 30

  31. Arrows in 3D Well integrable within “real” 3D: Eduard Gröller, Helwig Hauser 31

  32. Integration of Streamlines Numerical Integration

  33. Streamlines – Theory Correlations: flow data v : derivative information d x /d t = v ( x ); spatial points x  R n , time t  R, flow vectors v  R n streamline s : integration over time, also called trajectory, solution, curve s ( t ) = s 0 +  0  u  t v ( s ( u ))d u ; seed point s 0 , integration variable u difficulty: result s also in the integral  analytical solution usually impossible! Helwig Hauser, Eduard Gröller 33

  34. Streamlines – Practice Basic approach: theory: s ( t ) = s 0 +  0  u  t v ( s ( u ))d u practice: numerical integration idea: (very) locally, the solution is (approx.) linear Euler integration: follow the current flow vector v ( s i ) from the current streamline point s i for a very small time (d t ) and therefore distance Euler integration: s i +1 = s i + d t · v ( s i ), integration of small steps (d t very small) Helwig Hauser 34

  35. Euler Integration – Example v x = d x /d t =  y 2D model data: v y = d y /d t = x /2 Sample arrows: 2 1 True 0 solution: 0 1 2 3 4 ellipses! Helwig Hauser 35

  36. Euler Integration – Example Seed point s 0 = (0|-1) T ; current flow vector v ( s 0 ) = (1|0) T ; d t = 1/2 2 1 0 0 1 2 3 4 Helwig Hauser 36

  37. Euler Integration – Example New point s 1 = s 0 + v ( s 0 )·d t = (1/2|-1) T ; current flow vector v ( s 1 ) = (1|1/4) T ; 2 1 0 0 1 2 3 4 Helwig Hauser 37

  38. Euler Integration – Example New point s 2 = s 1 + v ( s 1 )·d t = (1|-7/8) T ; current flow vector v ( s 2 ) = (7/8|1/2) T ; 2 1 0 0 1 2 3 4 Helwig Hauser 38

  39. Euler Integration – Example  (1.44|-0.63) T ; = (23/16|-5/8) T s 3  (0.63|0.72) T ; v ( s 3 ) = (5/8|23/32) T 2 1 0 0 1 2 3 4 Helwig Hauser 39

  40. Euler Integration – Example  (1.75|-0.27) T ; = (7/4|-17/64) T s 4  (0.27|0.88) T ; v ( s 4 ) = (17/64|7/8) T 2 1 0 0 1 2 3 4 Helwig Hauser 40

  41. Euler Integration – Example  (0.20|1.69) T ; s 9  (-1.69|0.10) T ; v ( s 9 ) 2 1 0 0 1 2 3 4 Helwig Hauser 41

  42. Euler Integration – Example  (-3.22|-0.10) T ; s 14  (0.10|-1.61) T ; v ( s 14 ) 2 1 0 0 1 2 3 4 Helwig Hauser 42

  43. Euler Integration – Example s 19  (0.75|-3.02) T ; v ( s 19 )  (3.02|0.37) T ; clearly: large integration error, d t too large! 19 steps 2 1 0 0 1 2 3 4 Helwig Hauser 43

  44. Euler Integration – Example d t smaller (1/4): more steps, more exact! s 36  (0.04|-1.74) T ; v ( s 36 )  (1.74|0.02) T ; 36 steps 2 1 0 0 1 2 3 4 Helwig Hauser 44

  45. Comparison Euler, Step Sizes Euler is getting better propor- tionally to d t Helwig Hauser 45

  46. Euler Example – Error Table d t #steps error 1/2 19 ~200% 1/4 36 ~75% 1/10 89 ~25% 1/100 889 ~2%  1/1000 8889 ~0.2% Helwig Hauser 46

  47. Better than Euler Integr.: RK Runge-Kutta Approach: = s 0 +  0  u  t v ( s ( u ))d u theory: s ( t ) = s 0 +  0  u < i v ( s u )  d t Euler: s i Runge-Kutta integration: idea: cut short the curve arc RK-2 (second order RK): 1.: do half a Euler step 2.: evaluate flow vector there 3.: use it in the origin RK-2 (two evaluations of v per step): s i +1 = s i + v ( s i + v ( s i )·d t /2)·d t Helwig Hauser 47

  48. RK-2 Integration – One Step Seed point s 0 = (0|-2) T ; current flow vector v ( s 0 ) = (2|0) T ; preview vector v ( s 0 + v ( s 0 )·d t /2) = (2|0.5) T ; d t = 1 2 1 0 0 1 2 3 4 Helwig Hauser 48

  49. RK-2 – One more step Seed point s 1 = (2|-1.5) T ; current flow vector v ( s 1 ) = (1.5|1) T ; preview vector v ( s 1 + v ( s 1 )·d t /2)  (1|1.4) T ; d t = 1 2 1 0 0 1 2 3 4 Helwig Hauser 49

  50. RK-2 – A Quick Round RK-2: even with d t =1 (9 steps) better than Euler with d t =1/8 (72 steps) Helwig Hauser 50

Recommend


More recommend