overview of convolution integral topics impulse response
play

Overview of Convolution Integral Topics Impulse response defined - PowerPoint PPT Presentation

Overview of Convolution Integral Topics Impulse response defined Several derivations of the convolution integral Relationship to circuits and LTI systems J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 1


  1. Overview of Convolution Integral Topics • Impulse response defined • Several derivations of the convolution integral • Relationship to circuits and LTI systems J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 1

  2. Impulse Response h ( t ) x ( t ) y ( t ) • Recall that if x ( t ) = δ ( t ) , the output of the system is called the impulse response • The impulse response is always denoted h ( t ) • For a given input x ( t ) , it is possible to use h ( t ) to solve for y ( t ) • One method is the convolution integral • This is a important concept J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 2

  3. RC Circuit Impulse Response R + x ( t ) C y ( t ) - t RC u ( t ) h ( t ) = RC · e − • Many of the following examples use the impulse response of a simple RC voltage divider • We will learn how to solve for this impulse response using the Laplace transform soon • In many of the following examples RC = 1 s J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 3

  4. Continuous-Time Time Invariance • Recall that time invariance means that if the input signal is shifted in time, the output will be shifted in time also • Consider three separate inputs x 1 ( t ) = δ ( t ) x 1 ( t ) → y 1 ( t ) = h ( t ) x 2 ( t ) = δ ( t − 2) x 2 ( t ) → y 2 ( t ) = h ( t − 2) x 3 ( t ) = δ ( t − 5) x 3 ( t ) → y 3 ( t ) = h ( t − 5) • Let � e − t t > 0 h ( t ) = e − t u ( t ) = 0 t < 0 J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 4

  5. Example 1: Continuous-Time Time Invariance Input Output 1 1 x 1 (t) = δ (t−0) y 1 (t) = h(t−0) 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 1 1 x 2 (t) = δ (t−2) y 2 (t) = h(t−2) 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 1 1 x 3 (t) = δ (t−5) y 3 (t) = h(t−5) 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 Time (s) Time (s) J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 5

  6. Example 1: MATLAB Code t = -2:0.001:10; tc = [0 2 5]; for c1 = 1:length(tc), subplot(length(tc),2,c1*2-1); h = plot(tc(c1)*[1 1],[0 1],’b’,tc(c1),0.95,’b^’); set(h,’MarkerFaceColor’,’b’); set(h,’MarkerSize’,3); st = sprintf(’x_%d(t) = \\delta(t-%d)’,c1,tc(c1)); disp(st) ylabel(st); box off; xlim([min(t) max(t)]); ylim([0 1]); subplot(length(tc),2,c1*2); y1 = exp(-(t-tc(c1))).*(t>=tc(c1)); % Unit impulse response h[n] h = plot(t,y1,’r’); st = sprintf(’y_%d(t) = h(t-%d)’,c1,tc(c1)); ylabel(st); box off; xlim([min(t) max(t)]); end; J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 6

  7. Input Decomposition Let x ( t ) = r ( t ) − 2 · r ( t − 1) + · r ( t − 2) ⎧ 0 ≤ t ≤ 1 t ⎪ ⎨ = − ( t − 2) 1 ≤ t ≤ 2 ⎪ 0 otherwise ⎩ • We can approximate any bounded signal x ( t ) as a series of pulses with width w and height proportional to x ( t ) ∞ � t − ( k − 1 t − ( k + 1 � � � � �� x ( t ) ≈ x ( kw ) 2 ) w 2 ) w u − u k = −∞ J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 7

  8. Example 2: Input Decomposition Input 1 x(t) 0.5 0 −0.5 0 0.5 1 1.5 2 2.5 1 w = 0.50 0.5 0 −0.5 0 0.5 1 1.5 2 2.5 1 w = 0.25 0.5 0 −0.5 0 0.5 1 1.5 2 2.5 1 w = 0.10 0.5 0 −0.5 0 0.5 1 1.5 2 2.5 1 w = 0.04 0.5 0 −0.5 0 0.5 1 1.5 2 2.5 Time (s) J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 8

  9. Example 2: MATLAB Code fs = 1000; t0 = -0.5; t1 = 2.5; h = [0.50 0.25 0.10 0.04]; subplot(length(h)+1,1,1); t = t0:1/fs:t1; x = t.*(t>=0&t<1) + (-(t-2)).*(t>=1&t<2); hp = plot(t,x); set(hp,’MarkerFaceColor’,’b’); set(hp,’MarkerSize’,3); title(’Input’); ylabel(’x(t)’); box off; xlim([t0 t1]); for c1 = 1:length(h), subplot(length(h)+1,1,c1+1); t = t0:h(c1):t1; x = t.*(t>=0&t<1) + (-(t-2)).*(t>=1&t<2); hp = bar(t,x,1); set(hp,’FaceColor’,’w’); set(hp,’EdgeColor’,’r’); st = sprintf(’w = %4.2f’,h(c1)); ylabel(st); box off; xlim([t0 t1]); end; J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 9

  10. Replacing Rectangles with Impulses • If an input consists of a pulse that is sufficiently short in duration, the continuous-time system will respond the same as it would to an impulse with the same area • The following example shows the response of an RC circuit to three different pulses • Each pulse has unit area • The impulse response is also shown • Since the response is the same, we can replace our approximate input signal that consists of rectangles with a train of impulses, if h is sufficiently small J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 10

  11. Example 3: RC Pulse Response Input Output 1 0.4 h(t) y(t) x(t) y(t) 0.5 0.2 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 Input Output 1 1 h(t) y(t) x(t) y(t) 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 Input Output 10 1 h(t) y(t) x(t) y(t) 5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 Time (s) Time (s) J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 11

  12. Example 3: MATLAB Code sys = tf([0 1],[1 1]); % Transfer function of an RC circuit with RC = 1 t = -2:0.001:10; ht = exp(-t).*(t>=0); % System impulse response h = [2.0 1.0 0.1]; for c1 = 1:length(h), subplot(length(h),2,(c1-1)*2+1); x = (t>0 & t<h(c1))/h(c1); plot(t,x); title(’Input’); ylabel(’x(t)’); box off; xlim([min(t) max(t)]); subplot(length(h),2,c1*2); y = lsim(sys,x,t); % Simulate the output of the system plot(t,ht,’g’,t,y,’r’); legend(’h(t)’,’y(t)’); title(’Output’); ylabel(’y(t)’); box off; xlim([min(t) max(t)]); end; J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 12

  13. Impulse Input Decomposition x ( t ) can approximated as a sum of pulses. t − ( k − 1 t − ( k + 1 � � � � �� ∞ 2 ) w 2 ) w u − u � x ( t ) = x r ( t ) = w · x ( kw ) w k = −∞ Each pulse can be approximated as a unit impulse t − ( k − 1 t − ( k + 1 � � � � 2 ) w 2 ) w δ ( t − kw ) = d u ( t − kw ) u − u = lim d t w w → 0 so for small w , x ( t ) can also be approximated as a sum of impulses, ∞ � x ( t ) ≈ x δ ( t ) = w · x ( kw ) · δ ( t − kw ) k = −∞ Note that � ∞ � ∞ � � t − ( k − 1 � � t − ( k + 1 � � 2 ) w 2 ) w u − u δ ( t − kw ) d t = d t = 1 w −∞ −∞ J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 13

  14. Example 4: Approximations to x ( t ) Approximation with Rectangles Approximation with Impulses 1 0.5 w = 0.50 0.5 0 0 −0.5 0 0.5 1 1.5 2 2.5 −0.5 0 0.5 1 1.5 2 2.5 1 0.2 w = 0.25 0.5 0.1 0 0 −0.5 0 0.5 1 1.5 2 2.5 −0.5 0 0.5 1 1.5 2 2.5 1 0.1 w = 0.10 0.5 0.05 0 0 −0.5 0 0.5 1 1.5 2 2.5 −0.5 0 0.5 1 1.5 2 2.5 1 0.04 w = 0.04 0.5 0.02 0 0 −0.5 0 0.5 1 1.5 2 2.5 −0.5 0 0.5 1 1.5 2 2.5 Time (s) Time (s) J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 14

  15. Example 4: MATLAB Code fs = 1000; t0 = -0.5; t1 = 2.5; t = t0:1/fs:t1; x = t.*(t>=0&t<1) + (-(t-2)).*(t>=1&t<2); h = [0.5,0.25,0.10,0.04]; for c1 = 1:length(h), subplot(length(h),2,c1*2-1); th = t0:h(c1):t1; xr = th.*(th>=0&th<1) + (-(th-2)).*(th>=1&th<2); hb = bar(th,xr,1); set(hb,’FaceColor’,’w’); set(hb,’EdgeColor’,’b’); hold on; plot(t,x,’g’); hold off; st = sprintf(’w = %4.2f’,h(c1)); ylabel(st); box off; xlim([t0 t1]); subplot(length(h),2,c1*2); for c2 = 1:length(th), hp= plot(th(c2)*[1 1],[0 xr(c2)]*h(c1),’r’,th(c2),0.95*xr(c2)*h(c1),’r^’); hold on; set(hp(2),’MarkerFaceColor’,’r’); set(hp(2),’MarkerSize’,2); set(hp(2),’LineWidth’,0.001); end; hold off; box off; ylim([0 h(c1)]); xlim([t0 t1]); end; J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 15

  16. Applying Linearity If ∞ � x ( t ) ≈ x δ ( t ) = w x ( kw ) δ ( t − kw ) , k = −∞ then by linearity and time invariance, ∞ � y ( t ) ≈ y δ ( t ) = w x ( kw ) h ( t − kw ) k = −∞ In the limit as w → 0 , if x ( t ) and y ( t ) are integrable, we have � ∞ x ( t ) = w → 0 x δ ( t ) = lim x ( τ ) δ ( t − τ ) d τ −∞ � ∞ y ( t ) = w → 0 y δ ( t ) = lim x ( τ ) h ( t − τ ) d τ −∞ This is the continuous-time convolution integral J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 16

  17. Example 5: Impulse Approximation and Output Input Output 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 0.5 0.5 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 0.5 0.5 True Approximate 0 0 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 Time (s) Time (s) J. McNames Portland State University ECE 222 Convolution Integral Ver. 1.68 17

Recommend


More recommend