new perovskite perovskite materials materials as as
play

New Perovskite Perovskite Materials Materials as as Components - PowerPoint PPT Presentation

New Perovskite Perovskite Materials Materials as as Components Components New of Electrochemical Devices Devices for for Energy Energy of Electrochemical Generation. . Generation Susana Garc a a- -Mart Mart n n Susana


  1. New Perovskite Perovskite Materials Materials as as Components Components New of Electrochemical Devices Devices for for Energy Energy of Electrochemical Generation. . Generation Susana Garcí ía a- -Mart Martí ín n Susana Garc Departamento de Quí Departamento de Qu ímica Inorg mica Inorgá ánica, Facultad de nica, Facultad de C.C C.C. Qu . Quí ímicas, micas, Universidad Complutense, Madrid- -28040, ( 28040, (Spain Spain) ) Universidad Complutense, Madrid

  2. Design and synthesis of materials Characterization of the crystal structure Materials Science and microstructure of materials Electrical and electrochemical characterization of materials Performance of materials in devices Materials for energy production Technology IT-SOFC Li/Air batteries

  3. Why perovskite-type materials? La 1-x Sr x MnO 3- δ Cathode Zr 1-x Y x O 2-  Electrolyte Cermet Anode Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- δ Sha o Z., Ha ile S. M., Nature 431, (2004) BaGdCo 2 O 6- δ a ra nc ó n A. e t a l. J. Mater. Chem. 17, (2007) T BaGdMn 2 O 6- δ a nd BaGdCo 2 O 6- δ T a skin A. A., e t a l. Progress in Solid State Chemistry 35, (2007), 481. PrBaCo 2 O 6- δ K im e t a l. J. Mater. Chem. 17, (2007), 2500.

  4. AA’ ’M M 2 O 6 AA 2 O 6- -   Layered perovskites Layered perovskites: A : A- -cation cation ordering ordering RE A’ Ba A RE Ba A’ RE A A’M 2 O 6 RE AM 2 O 5.5  Higher Higher oxygen oxygen diffusion diffusion than than LSM LSM   Better Better catalytical catalytical properties properties than than LSM LSM 

  5. ordering effects effects in in perovskites perovskites ordering SAED, HRTEM and and EELS EELS SAED, HRTEM BaGdCo 2 O 6 BaGdCo 2 O 6- - δ δ BaGdMn 2 O 6 BaGdMn 2 O 6- - δ δ

  6. Ideal perovskite perovskite ABX ABX 3 Ideal 3 001 p 011 p 001 p 011 p 111 p 001 p 111 p 111 p 001 p 111 p 110 p 000 110 p 000 010 p 000 010 p 000 100 p 110 p  2a p ×  2a p × 2a p 100 p 110 p a p × a p × a p 2a p × 2a p × 2a p

  7. Layered A A- -site site ordering ordering A AA A’ ’B B 2 O 6 Layered 2 O 6 001 p 011 p 111 p 001 p 111 p 110 p 000 010 p 000 100 p 110 p a p × a p × 2a p Rock- Rock -sal salt B t B- -site site ordering ordering A A 2 2 ( (B BB B’ ’)O )O 6 6 001 p 111 p 001 p 011 p 111 p 110 p 000 010 p 000  2a p ×  2a p × 2a p 100 p 110 p 2a p × 2a p × 2a p

  8. Layered A A- -site site ordering ordering A AA A’ ’B B 2 O 6 Layered 2 O 6 ] 0 1 1 [ p [001] p 001 p 111 p 110 p 000 a p × a p × 2a p

  9. BaGdCo 2 O 6 BaGdCo 2 O 6- - δ δ SAED and and HRTEM HRTEM SAED

  10. GdBaCo 2 O 6-  ASR=0.29 Ω /cm 2 ASR=1 Ω /cm 2 ASR=0.17 Ω /cm 2 ASR=0.50 Ω /cm 2 ASR=0.039 Ω /cm 2 ASR=0.072 Ω /cm 2 ASR=0.024 Ω /cm 2 ASR=0.047 Ω /cm 2

  11. GdBaCo 2 O 6-  prepared in Ar 001 p 001 p 100 p 011 p 100 p 110 p - [101] p 100 p 110 p - 010 p 101 p [001] p 2a p a p × a a p × 2a 2a p a p × p × p Ba/ /Gd Gd ordering ordering 5 nm Ba

  12. GdBaCo 2 O 6-  prepared in Air 001 p 010 p 100 p 010 p 010 p 100 p a p × 3a 3a p × 2a 2a p a p × p × p [001] p Ba/ /Gd Gd ordering ordering Ba 3a p 3a p Anion Anion vacancies vacancies ordering ordering 2a p 3a p

  13. BaGdMn 2 O 6 BaGdMn 2 O 6- - δ δ SAED, HRTEM and and EELS EELS SAED, HRTEM Powder Neutron Neutron Diffraction Diffraction Powder

  14. GdBaMn 2 O 6 GdBaMn 2 O δ - δ 6- 110 p 001 p 100 p 001 p ▬ - 110 p 110 p 110 p 100 p 010 p [110] p [100] p - [110] p [010] p 4d 110p 4d 110p 5 nm

  15. GdBaMn 2 O 6 GdBaMn 2 O - δ δ 6- 110 p 100 p 001 p 001 p ▬ - 110 p 110 p 110 p 100 p 010 p ▬ 111 p 111 p 001 p 010 p ▬ 110 p 110 p ▬ 100 p 000 p 100 p  2a p × 2  2a p × 4a p P 2 1 2 1 2 1 Ba/ /Gd Gd ordering ordering, , CO (Mn CO (Mn 3+ /Mn 4+ ), anion anion vacancies vacancies ordering ordering Ba 3+ /Mn 4+ ),

  16. EELS Mn-L 3 Intensity (a.u.) Mn-L 2 4.5 MnO 4.0 3.5 Mn L 3 /L 2 630 640 650 660 670 680 690 700 3.0 Mn 3 O 4 Energy-Loss (eV) 2.5 Mn 2 O 3 2.0 MnO 4 2 1.5 2.0 2.5 3.0 3.5 4.0 Oxidation State BaGdMn 2 O 5 BaGdMn 2 O Mn oxidation oxidation state state: 3.24 : 3.24 ± ± 0.06 0.06 Mn 5.74 .74 BaGd(0,25Mn (0,25Mn 4+ 0,75Mn 3+ ) 2 O 5.75 BaGd 4+ 0,75Mn 3+ ) 2 O 5.75

  17. SmBaMn 2 O 6, TbBaMn 2 O 6 M. Uc hida , D. Aka ho shi, R. K uma i, Y. T o mio ka , T . Arima , T . T o kura , Y. Ma tsui, Jo urna l o f the Physic a l So c ie ty o f Ja pa n, 71, 2002, 2605; T . Arima , D. Aka ho shi, K . Oika wa , T . Ka miya ma , M. Uc hida , Y. Ma tsui, T . T o kura , Physic a l Re v. B 66, 2002, 140408 YBaMn 2 O 6 H. K AGE YAMA, T . NAK AJI MA, M. I CHI HARA, Y. UE DA, H. YOSHI ZAWA AND K . OHOYAMA Jo urna l o f the Physic a l So c ie ty o f Ja pa n, 72, 2003, 241.  2a p × 2  2a p × 4a p Ba/Gd ordering and COO

  18. New Type of Charge/Orbital Ordering in the GdBaMn 2 O 5.75 Perovskite Mn 3+ Mn 4+ = 2  2a p 2d 110p [110] p [110] p Mn 4+ Mn 3+ [110] p [-110] p

  19. New Type of Charge/Orbital Ordering in the GdBaMn 2 O 5.75 Perovskite Mn 4+ 001 p 001 p Gd 3+ 110 p Mn 3+ 100 p Ba 2+ Mn 3+ Gd 3+ Mn 4+ ] 0 1 1 [ p Ba 2+ Mn 4+ [001] p [001] p [100] p Mn 4+ Gd 3+ Mn 3+ Ba 2+ Mn 3+ Gd 3+ Mn 3+ Ba 2+ Mn 4+

  20. TbBaMn 2 O 6  2a p × 2  2a p × 4a p P 2 1 2 1 2 1 TbBaMn 2 O - δ δ 6- Ba/ Ba /Gd Gd ordering ordering; ; octahedra octahedra tilting tilting, , CO (Mn CO (Mn 3+ 3+ /Mn /Mn 4+ 4+ ), ), anion anion vacancies ordering vacancies ordering The NPD pattern collected on the 153 ° backscattering bank of HIPD (black circles), the fit using the P 4/ mmm aristotype model (red), and the difference (beneath). The tick marks show the allowed hkl positions of for the aristotype structure. The insert shows some of the weak unfit reflections.

  21. TbBaMn 2 O 6 EWR analysis TbBaMn 2 O EWR analysis - δ δ 6-  2a p × 2  2a p × 4a p P 2 1 2 1 2 1 anion vacancies vacancies within within the the Tb Tb planes planes and and associated associated to to the the Mn Mn 3+ anion 3+ ions ions

  22. CONCLUSIONS CONCLUSIONS Crystal Structure Structure Crystal Physical and chemical properties Electronic Structure Structure Electronic Mn 4+ Mn 3+ SAED and SAED and HHRTEM HHRTEM EELS EELS HAADF- -STEM ( STEM (Aberration Aberration correction correction) ) HAADF BF- -STEM STEM BF EWR EWR

  23. Acknowledgements: : Acknowledgements Prof. Emilio Morá Prof. Emilio Mor án n Migu Migué élez lez Prof. Nobuyuki Prof. Nobuyuki Imanishi Imanishi Prof. Miguel Á Prof. Miguel Ángel ngel Alario Alario Franco Franco Prof. Yuichi Prof. Yuichi Shimakawa Shimakawa Dr. Juan Peñ Dr. Juan Pe ña Mart a Martí ínez nez Dr. Dr. Noriyuchi Noriyuchi Sonoyama Sonoyama Subakti Subakti Alejandro Gó Alejandro G ómez P mez Pé érez rez Daniel Muñ Daniel Mu ñoz Gil oz Gil Prof. Flaviano Prof. Flaviano Garc Garcí ía Alvarado a Alvarado Prof. Ulises Amador Elizondo Prof. Ulises Amador Elizondo Funding PIB2010JP-00181 (MICINN ) MAT2010-19837 (MICINN)

Recommend


More recommend