opto electronic characterization of perovskite thin films
play

Opto-electronic Characterization of Perovskite Thin Films & Solar - PowerPoint PPT Presentation

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017 Outline Introduction to


  1. Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

  2. Outline • Introduction to organic-inorganic metal halide perovskite semiconductors used in optoelectronic devices, • Development of luminescence imaging technique for perovskite solar cells :  Investigation of the light stability of perovskite solar cells, • Investigate the excitonic characteristics of perovskites:  Excitonic binding energy ( Ry * ) and reduced mass ( m * )  Impact of:  Microstructure,  Polarons,

  3. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications: 1  Photo-detectors,  Light-emitting diodes,  Photovoltaics, 1 Martin Green et al, Nat. Photonics ( 2014 )

  4. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability 2 , 2 Eva Unger et al, Material Chemistry A ( 2017 )

  5. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient 1 , 1 Martin Green et al, Nat. Photonics ( 2014 )

  6. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient 1 ,  Long charge-carrier diffusion length (> 175 µm in single crystal) 3 3 Qingfeng Dong et al, Science ( 2015 )

  7. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Pros:  Bandgap tunability,  High absorption coefficient,  Long charge-carrier diffusion length (> 175 µm in single crystal)  Low exciton binding energy,

  8. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses 4 , Polycrystalline perovskite ~ 10 15 -10 17 cm -3 CIGS ~ 10 13 cm -3 Single crystal perovskite ~ 10 9 -10 12 cm -3 4 Samuel Stranks , ACS Energy Letters ( 2017 )

  9. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses,  Long-term stability (light, temperature and moisture) 5 , 5 Eperon et al, Energy & Environ. Sci. ( 2014 )

  10. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, o Cons:  Charge-carrier non-radiative recombination losses,  Long-term stability (light, temperature and moisture) 5 ,  Photo-current hysteresis in J - V (voltage range, sweep rate and sweep direction) 6 , 6 Snaith et al, J. Phys. Chem. Letters ( 2014 )

  11. Introduction Organic-inorganic metal halide perovskite semiconductors: • General formula ABX 3 : + , H 2 N-CH=NH 2 + , Cs + , Rb + ; B = Pb 2+ ,Sn 2+ ; X = I - , Br - ; A = CH 3 NH 3 • Applications:  Photo-detectors,  Light-emitting diodes,  Photovoltaics, 7 7 Green & Ho-Baillie , ACS Energy Letters ( 2017 )

  12. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging have been widely and successfully being used in the silicon PV community. PL Image EL Image R s Image [ Ω .cm 2 ] [a.u] [a.u]

  13. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging have been widely and successfully being used in the silicon PV community.

  14. Luminescence Imaging Studies • Photoluminescence (PL) and electroluminescence (EL) imaging has been widely and successfully being used in the silicon PV community. • Luminescence imaging speeds up reliable characterization and inspection of solar cell. • For the first time, the validity of the Planck’s generalized emission law was investigated for perovskite solar cells through PL and EL imaging. 8 • The impact of pre-treatment of the device such as light-soaking was examined on the Planck’s law. 8 • Degradation in dark investigated and J-V performance was assessed using imaging. 9 • Luminescence imaging is also used to investigate the: 10  Immediate device response to light current-voltage and light-soaking measurements.  Long-term device response to light current-voltage and light-soaking measurements. 8 Ziv Hameiri, Arman Mahboubi Soufiani et al , PIP 23 ,1697 ( 2015 ) 9 Arman Mahboubi Soufiani et al , JAP 120 , 035702 ( 2016 ) 10 Arman Mahboubi Soufiani et al , Adv. Energy Mat. 7 , 1602111 ( 2016 )

  15. Luminescence Imaging Measurement Setup • Excitation source: 635 nm light emitting diode (LED). • Detection system: Silicon charge-coupled device (CCD) camera with 100 milliseconds resolution. • LED tail spectrum is filtered out using SP filters. • Reflection from the device is filtered out using LP filters at the detection point.  PL at open-circuit condition : PL OC  PL at short-circuit condition : PL SC  EL at terminal voltage bias of X : EL X

  16. Device Structure • Planar CH 3 NH 3 PbI 3 based solar cells fabricated via gas-assisted technique. 10 • c-TiO 2 as the electron selective and Spiro-OMeTAD as the hole selective contacts. • Device active area ≈ 8 x 8 mm 2 Mask • Aperture Diameter = 4.5 mm 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  17. Effect of Prolonged Illumination 21 a EL (Pristine) b a 18 -2 ) Current Density (mA  cm 15 12 a.u. Scan 1 9 Scan 2 Scan 3 Scan 4 6 Scan 5 Scan 6 1 mm 3 Scan 7 Scan 8 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Voltage (V) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  18. Initial Observations after I-V Measurements: EL and PL OC a c d EL Ratio EL (Pristine) EL (I-V) a.u. a.u. a.u. 1 mm   V     j ( E ) EQE ( E ) exp   em PV   V th E :  Energy : EL intensity em Thermal voltage EQE : V : Photovoltaic external quantum efficiency PV th V : Junction voltage j 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  19. Initial Observations after I-V Measurements: EL and PL OC a c d EL Ratio EL (Pristine) EL (I-V) a.u. a.u. a.u. 1 mm g e PL OC (Pristine) f PL OC (I-V) PL OC Ratio a.u. a.u. a.u. 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  20. Initial Observations after I-V Measurements: EL and PL SC EL 1.05V PL SC 4250 3500 c a b 4000 3250 a.u. a.u. PL SC Intensity (a.u.) EL Intensity (a.u.) 3750 3000 3500 2750 3250 2500 1 mm 1 mm 3000 2250 -100 -50 0 50 100 Pixel 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  21. Light-soaked Bilayers: PL OC 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  22. Immediate Observations after I-V Measurements • Series resistance (interfacial): Improved. • Bulk non-radiative recombination: Possibly Reduced. • Front surface non-radiative recombination: Increased. • Back surface non-radiative recombination: Possibly Increased? 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  23. Long-term Evolution of EL

  24. Long-term Evolution of PL OC 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  25. Light-soaking at Open-circuit MAPbI 3 4 10 c-TiO 2 /MAPbI 3 MAPbI 3 /Spiro Occurence Frequency (110) Full Device 3 10 Intensity (a.u.) 2 10 1 10 0 10 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 1000 10000 Angle (2  ) PL Intensity (a.u.) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  26. Light-soaking at Open-circuit MAPbI 3 4 10 c-TiO 2 /MAPbI 3 MAPbI 3 /Spiro Occurence Frequency (110) Full Device 3 10 Intensity (a.u.) 2 10 1 10 0 10 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 1000 10000 Angle (2  ) PL Intensity (a.u.) 10 Arman Mahboubi Soufiani et al, Adv. Energy Mat. 7 , 1602111 (2016)

  27. Proposed Mechanism a b c d e f

Recommend


More recommend