models in spintronics part i
play

Models in spintronics (Part I) OUTLINE : Spin-dependent transport - PowerPoint PPT Presentation

Models in spintronics (Part I) OUTLINE : Spin-dependent transport in metallic magnetic multilayers -Introduction to spin-electronics -Spin-dependent scattering in magnetic metal -Current-in-plane Giant Magnetoresistance -Modelling transport in


  1. Models in spintronics (Part I) OUTLINE : Spin-dependent transport in metallic magnetic multilayers -Introduction to spin-electronics -Spin-dependent scattering in magnetic metal -Current-in-plane Giant Magnetoresistance -Modelling transport in CIP spin-valves -Current-perpendicular-to-plane Giant Magnetoresistance -Spin accumulation, spin current, 3D generalization. B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  2. Birth of spin electronics : Giant magnetoresistance (1988) Fe/Cr multilayers Fert et al, PRL (1988), Nobel Prize 2007 Two limit geometries of measurement: I ~ 80% V I Current-in-plane I V I Magnetic field (kG) I Current-perpendicular-to-plane R R  AP P GMR  R P Antiferromagnetically coupled multilayers B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  3. Low field GMR: Spin-valves -3 emu) (a) 1 Antiferromagnetic FeMn 90Å M (10 pinning layer 0 Ferromagnetic -1 NiFe 40Å pinned layer (b) Non magnetic spacer Cu 22Å 4  R/R (%) 3 NiFe 70Å Soft ferromagnetic layer 2 Ta 50Å Buffer layer 1 0 400 600 800 -200 0 200 substrate H(Oe) 4 (c)  R/R (%) 3 IBM Almaden 2 Ultrasensitive magnetic field sensors (MR heads) Spin engineering 1 0 B.Dieny et al, Phys.Rev.B.(1991)+patent US5206590 (1991). -40 -20 40 0 20 H(Oe) B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  4. Benefit of GMR in magnetic recording GMR spin-valve heads from 1998 to 2004 B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  5. Two current model (Mott 1930) for transport in magnetic metals As long as spin-flip is negligible, current can be considered as carried in parallel by two categories of electrons: spin  and spin  (parallel and antiparallel to quantization axis)  1     1 1                      Sources of spin flip: magnons and spin-orbit scattering Negligible spin-flip often crude approximation (spin diffusion length in NiFe~4.5nm, 30% spin memory loss at Co/Cu interfaces) B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  6. Spin dependent transport in magnetic metals (1) Band structure of 3d transition metals In transition metals, partially filled bands which participate to conduction are s and d bands Non-magnetic Cu : Magnetic Ni : E E s  (E) s  (E) s  (E) s  (E) D  (E) D  (E) D  (E) D  (E) E E D  (E F )  D  (E F ) D  (E F ) = D  (E F ) Most of transport properties are determined by DOS at Fermi energy Spin-dependent density of state at Fermi energy B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  7. Spin dependent transport in magnetic metals (2) m*(d) >> m*(s) J mostly carried by s electrons in transition metals Scattering of electrons determined by DOS at E F : E s  (E) s  (E) P  2    i W f D f E ( ) Fermi Golden rule : F D  (E) s  s  D  (E) d  s  s  d  Most efficient scattering channel Spin-dependent scattering rates in magnetic transition metals     10 nm ; 1 nm Example:   Co Co B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  8. Potential experienced by conduction electrons in magnetic metallic multilayers Parallel magnetic configuration Antiparallel magnetic configuration Co/Cu majority electrons : antiparallel magnetic configuration Co/Cu majority electrons : parallel magnetic configuration Co Cu Co Cu (c) (a) Co/Cu minority electrons : parallel magnetic configuration Co/Cu minority electrons : parallel magnetic configuration Co/Cu minority electrons : antiparallel magnetic configuration U(x,z) (b) (d) x z •Lattice potential modulation due to difference between Fermi energy and bottom of conduction band (reflection, refraction) •Spin-dependent scattering on impurities, interfaces or grain boundaries (Dominant effect in GMR) B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  9. Simple model of Giant Magnetoresistance Parallel config Antiparallel config Fe Cr Fe Fe Cr Fe 2        2      1         ap        1   Equivalent resistances :               Key role of     2    scattering contrast         AP    P    2   B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  10. Modeling current-in-plane transport (semi-classical Boltzman theory of GMR) Approach initiated by Camley and Barnas, PRL, 63, 664 (1989) Gas of independent particles described by distribution f(r, v, t), submitted to force field F (=-e E for electrons in electrical field E). Time evolution of the distribution described by Boltzman equation: Equilibrium function conserved in a volume element d r d v along a flow line. df  df   df         0 t+dt In presence of scattering, dt  dt   dt  t F scattering E Balance between acceleration due to force and relaxation due to scattering          df f f f f f f f          . v . v . v . a . a . a x y z x y z         dt  t x y z v v v F x y z       f        m a F v . f a . f with  r v  t B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  11.         df df f F            v . f . f  r v  dt dt t m     F scatt  f  0 In stationary regime,  t     0   df f f    In single relaxation time approximation (  )  dt   scatt Where f 0 is the equilibrium distribution (Fermi Dirac for electrons). Boltzmann equation for electron gas in electrical field E :         0 e E f f      v . f . f  r v  m B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  12. Modeling current transport in bulk metals I               f r , v f r , v g r , v 0 V Perturbation Fermi-Dirac due to electric field 1      f r , v      0 I    exp F 1   k T   B    E      0 e E f f      v . f . f  x r v  m   f  0 Spatially homogeneous transport  r k z   eE f  g ( v ) x 0 x  m v x k x In k-space, shift in Fermi surface by  k     k eE  k y x B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  13. Modeling current transport in bulk metals (cont’d) Current density: (     3 j e v g v ) d v x  2 ne 1     j E E E  m ne  2   m Well-known expression of conductivity in Drude model n=density of conduction electrons n~1/atom in noble metals such as Cu, Ag, Au n~0.6/atom in metals such as Ni, Co, Fe B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  14. Typical resistivity of sputtered metals Material Measured Material Measured resistivity resistivity (ferro) 4K/300K 4K/300K 0.5-0.7  .cm Cu a 10-15  .cm Ni 80 Fe 20 a 3-5 22-25 1  .cm Ag f 9-13  .cm 7 Ni 66 Fe 13 Co 2 20-23 b 2  .cm Au g 1 8 4.1-6.45  .cm Co a,d 160  .cm 12-16 Pt 50 Mn 50 e 180 6-9  .cm Co 90 Fe 10 h 140  .cm Ni 80 Cr 20 13-18 e 140 7-10  .cm Co 50 Fe 50 h 9.5-11  .cm 15-20 Ru c 14-20 Thermal variation of resistivity due to phonon scattering and magnon scattering (in magnetic metals) B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

  15. Modeling current transport in metallic thin films I               f r , v f r , v g r , v 0    z      V 0 e E f f      v . f . f  r v  I m E x Due to scattering at outer surfaces, the perturbation g is no longer homogeneous: g(z)         0 g z , v g z , v eE f v      z v mv v z z x     = elastic mean free path Integration constants determined v F from boundary conditions General solution :      f z        0   g z , v eE v 1 A exp      x    v       z +(-) refer to electrons traveling towards z>0 (z<0) B.Dieny « Models in spintronics » 2009 European School on Magnetism, Timisoara

Recommend


More recommend