spintronics material aspects spintronics material aspects
play

Spintronics material aspects Spintronics material aspects Why to - PowerPoint PPT Presentation

Spintronics material aspects Spintronics material aspects Why to do not combine complementary properties and functionalities of semiconductor and magnetic material systems? hybrid structures -- overlayers or inclusions of


  1. Spintronics – material aspects Spintronics – material aspects Why to do not combine complementary properties and functionalities of semiconductor and magnetic material systems? • hybrid structures -- overlayers or inclusions of ferromagnetic metals => source of stray fields and spin-polarized carriers -- soft ferromagnets => local field amplifiers -- hard ferromagnets => local field generators • ferromagnetic semiconductors

  2. MAGNETIC SEMICONDUCTORS MAGNETIC SEMICONDUCTORS Tomasz DIETL Institute of Physics, Polish Academy of Sciences, Warsaw Collaboration: Grenoble (J. Cibert et al.), Sendai (H. Ohno et al.), Austin (a. MacDonald et al.), Regensburg (D. Weiss et al.), … 1. Families of magnetic semiconductors 2. Spin manipulations in ferromagnetic semiconductors 3. Magnetic impurities in semiconductors 4. sp-d exchange interactions 5. d-d exchange interactions 6. Outlook 7. Summary Support: EC: AMORE, FENIKS, ERATO (JST), A.V. Humboldt Foundation

  3. Families of magnetic semiconductors

  4. Magnetic semiconductors Magnetic semiconductors • magnetic semiconductors short-range ferromagnetic super- or double exchange EuS, ZnCr 2 Se 4 , La 1-x Sr x MnO 3 , ... short-range antiferromagnetic superexchange EuTe, ...

  5. now: Diluted Magnetic Semiconductors (DMS)

  6. DMS: standard semiconductor + DMS: standard semiconductor + magnetic ions magnetic ions • Various magnetic ions: - mostly 3d transition metals: Sc, ..., Cu - rare earth (4f): Ce, ..., Tm - also actinides (5f), 4d TM, ... • Various hosts: - II-VI: Cd 1-x Mn x Te, Hg 1-x Fe x Se,... - IV-VI: Sn 1-x Mn x Te, Pb 1-x Eu x S - III-V: In 1-x Mn x Sb, Ga 1-x Er x N, ... - IV: Ge 1-x Mn x , Si 1-x Ce x - ....

  7. Most of DMS: random antiferromagnet Most of DMS: random antiferromagnet short range antiferromagnetic superexchange

  8. Evidences for antiferromagnetic pairs Evidences for antiferromagnetic pairs H 12 = - 2 J S 1 S 2 H 12 = - 2 J S 1 S 2 inelastic neutron scattering Zn 0.95 Mn 0.05 Te T. Giebultowicz et al. H. Kepa, …, T.D., PRL’03

  9. Evidences for antiferromagnetic Evidences for antiferromagnetic interactions: magnetic susceptibility interactions: magnetic susceptibility Curie-Weiss law χ = C /( T − Θ ) C = g µ B S ( S +1) xN o /3 k B Θ < 0 antiferro A. Lewicki et al.

  10. Magnetization of localized spins Magnetization of localized spins M(T,H) = g µ B Sx eff N o B S [ g µ B H / k B (T + T AF ) antiferromagnetic interactions x eff < x T AF > 0 Modified Brillouin function Y. Shapira et al.

  11. Ferromagnetic DMS Ferromagnetic DMS long-range hole-mediated ferromagnetic exchange IV-VI: p-Pb 1-x-y Mn x Sn y Te (Story et al.’86) III-V: In 1-x- Mn x As (Ohno et al.’92) Ga 1-x- Mn x As (Ohno et al.’96) T C ≈ 100 K for x = 0.05 II-VI: p-Cd 1-x Mn x Te/Cd 1-x-y Zn x Mg y Te:N QW (Haury et al.’97, Kossacki et al.’99) p-Zn 1-x Mn x Te:N (Ferrand et al.’99) p-Be 1-x Mn x Te:N (Hansen et al.’01) III-V and II-VI DMS: quantum nanostructures and ferromagnetism combine

  12. Spin manipulations in ferromagnetic DMS

  13. Tuning magnetic ordering by Tuning magnetic ordering by electric field (ferro-FET) (In,Mn)As electric field (ferro-FET) (In,Mn)As M I V H H. Ohno, .., T.D., ...Nature ’00

  14. Modulation-doped p-type magnetic QWs Modulation-doped p-type magnetic QWs (Cd,Mg)Te:N (Cd,Mg)Te:N (Cd,Mn)Te σ + σ - σ + σ - ENERGY ∆ E ~ M J. Cibert et al. (Grenoble)

  15. Control of Control of V ferromagnetism ferromagnetism p doped by electric by electric QW field in a pin undoped field in a pin barriers diode – ferro-LED diode – ferro-LED n doped Photoluminescence a b 0V -1V 4.2 K 4.2 K PL Intensity (a.u.) 3.03 2.97 E c 2.82 2.80 2.19 2.19 E F 2.05 2.05 1.87 1.88 1.65 1.65 V 1.49 K 1.49 K E v 1700 1710 1700 1710 Hole liquid Depleted Energy (meV) H. Boukari, …, T.D., PRL’02

  16. Combined: electrostatic Combined: electrostatic gate + illumination V gate + illumination in p-i-n diode (ferro-LED) in p-i-n diode (ferro-LED) QW a b 0V -1V 1.5 K 4.2 K 4.2 K 0 V PL Intensity (a.u.) 3.03 2.97 2.82 n 2.80 o 2.19 i 2.19 t a 2.05 n 2.05 i m 1.87 1.88 u 1.65 1.65 l l 1.49 K 1.49 K i 1700 1710 1700 1710 E c 1700 1710 Energy (meV) Hole liquid Depleted Ferro- diode: E F electric field and light tuned ferromagnetism V E v

  17. Optical tuning of magnetization – p-i-p diode Optical tuning of magnetization – p-i-p diode paramagnetic E c p T × 10 10 p =16 × 10 10 cm -2 T = 1.34 K -2 Hole concentration cm 4.2 K 2.7 Temperature Illumination 2.7 K 5.2 2.4 K 7.1 2.1 K 10 E F 1.8 K 12 E v (a) (b) 1.2 K 16 1680 1690 1700 1710 1680 1690 1700 1710 CdMnTe QW Energy [ m eV ] Energy [ m eV ] 8 nm T = const p = const ferromagnetic 0 to 4% Mn pip diode: light destroys ferromagnetism

  18. Magnetic ions in semiconductors • position of d levels, U • charge and spin states • intra ion excitation energies d � d* • coupling to band states: -- spin dependent: sp-d exchange interactions -- spin independent: band offsets -- crystal-field effects

  19. Transition metals – free atoms Transition metals – free atoms • Electronic configuration of TM atoms: 3d n 4s 2 1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn • Important role of electron correlation for open d shells - intra site correlation energy U = E n+1 – E n 3d 6 UHB for n =5, U ≈ 15 eV U LHB 3d 5

  20. Transition metals – free atoms Transition metals – free atoms • Electronic configuration of TM atoms: 3d n 4s 2 1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn • Important role of electron correlation for open d shells - intra site correlation energy U = E n+1 – E n for n =5, U ≈ 15 eV - intra-site exchange interaction: ferromagnetic Hund’s rule: S the highest possible for n = 5 , E S=3/2 − E S=5/2 ≈ 2 eV 3d * 5 3d 5

  21. Transition metals – free atoms Transition metals – free atoms • Electronic configuration of TM atoms: 3d n 4s 2 1 ≤ n ≤ 10: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn • Important role of electron correlation for open d shells - intra site correlation energy U = E n+1 – E n for n =5, U ≈ 15 eV - intra-site exchange interaction: ferromagnetic Hund’s rule: S the highest possible for n = 5 , E S=3/2 − E S=5/2 ≈ 2 eV 4s 1 - TM atoms, 3d n 4s 1 , e.g., Mn : E S=2 − E S=3 ≈ 1.2 eV � J s-d ≈ 0.4 eV ferromagnetic despite of screening and hybridization these 3d 5 effects survive in solids

  22. Where d levels and carriers reside in DMS? Where d levels and carriers reside in DMS? Possibilities: -- manganides La 1-x Sr x MnO 3 -- cuprates La 2-x Sr x CuO 4 Mott-Hubbard AF insulator for x � 0 charge transfer AF insulator for x � 0 E c.b. (cation s orbitals) c.b. d TM band v.b. v.b. (anion p orbitals) d TM band DOS Experimental guide: impurity limit (EPR, d –> d*, … )

  23. TM impurities in II-VI compounds TM impurities in II-VI compounds • TM atoms: 3d n 4s 2 � • TM impurity (d n ) neutral since: d n /d n+1 -- donor level d n /d n-1 resides below c.b. -- acceptor level d n /d n+1 resides above v.b. d n /d n-1 • Exceptions (charged TM) -- Sc in CdSe

  24. d-levels of TM ( 3d n 4s 2 ) impurities in II-VI’s d-levels of TM ( 3d n 4s 2 ) impurities in II-VI’s • Mn 2+ (d 5 , S = 5/2) • AF superexchannge d n /d n+1 (random AF) acceptor HHB d n /d n-1 donor LHB • no d levels at E F • independent control of Mn and A.Zunger, J.Baranowski, P.Vogl, carrier densities (doping, light) J.Langer, A.Fujimori, ... • strong sp-d exchange H = -IsS

  25. TM impurities in III-V compounds TM impurities in III-V compounds •TM atoms: 3d n 4s 2 � •TM impurity (d n-1 ) neutral if -- donor level d n-1 /d n-2 resides below c.b. -- acceptor level d n-1 /d n resides above v.b. d n-1 /d n • Mn in III-V: resonant + hydrogenic acceptor

  26. sp-d exchange interactions in DMS

  27. Potential s-d exchange interaction Spin part of Coulomb energy for s and d electrons E sd = -J sd ( S + s) 2 = -J sd S 2 - J sd s 2 -2J sd Ss = C-2J sd Ss = C- α N o Ss for Mn atom α N o = 0.4 eV interaction of magnetic moments: E dipole-dipole ≈ 0.004 eV in semiconductor compounds α N o reduced by • screening • admixture of s-type anion wave function

  28. Spin dependent interaction between Spin dependent interaction between valence band holes and Mn spins valence band holes and Mn spins Gain of energy due to 3d 6 symmetry allowed hybridization • quantum hopping of electrons from the v.b. to the d level • quantum hopping of electrons 3d 5 v.b. from the d level to the empty v.b states • H i = - β N o sS i (Schriffer-Wolff) � kinetic pd exchange

  29. Contribution to the kp hamiltonian due to Contribution to the kp hamiltonian due to the presence of a magnetic ion the presence of a magnetic ion • H j = U o ( r- R j ) - sites with no magnetic ion • H i = U ( r- R i ) - J ( r-R i ) sS i - sites with the magnetic ion • kp model: non-vanishing matrix elements: V = <S|U-U o |S>, W = <X|U -U o |X> - conduction and valence band offset integrals α = <S|U|S>, β = <X|U|X> - s-d and p-d exchange integrals S>, X> - Bloch wave functions Energies: VN o etc.

Recommend


More recommend