math 20 probability
play

MATH 20: PROBABILITY Variance of Discrete Random Variables - PowerPoint PPT Presentation

MATH 20: PROBABILITY Variance of Discrete Random Variables Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020 Important Distributions Hypergeometric Discrete Uniform Distribution Distribution = 1 $ &"$ % !"%


  1. MATH 20: PROBABILITY Variance of Discrete Random Variables Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020

  2. Important Distributions Hypergeometric Discrete Uniform Distribution Distribution ๐‘› ๐œ• = 1 $ &"$ % !"% โ„Ž ๐‘‚, ๐‘™, ๐‘œ, ๐‘ฆ = ๐‘œ & ! Negative Binomial Binomial Distribution Distribution ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘ฃ ๐‘ฆ, ๐‘™, ๐‘ž ๐‘™ ๐‘ž $ ๐‘Ÿ !"$ = ๐‘ฆ โˆ’ 1 ๐‘™ โˆ’ 1 ๐‘ž $ ๐‘Ÿ %"$ Geometric Poisson Distribution Distribution ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ $ ๐‘„ ๐‘ˆ = ๐‘œ = ๐‘Ÿ !"# ๐‘ž ๐‘™! ๐‘“ "' XC 2020

  3. Binomia Bin ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘™ ๐‘ž ! ๐‘Ÿ "#! ๐น ๐‘Œ = ๐‘œ๐‘ž Ge Geometric ๐น ๐‘Œ = 1 ๐‘„ ๐‘ˆ = ๐‘œ = ๐‘Ÿ "#$ ๐‘ž ๐‘ž Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐น ๐‘Œ = ๐œ‡ ๐‘™! ๐‘“ #% Negative Ne binomi omial ๐น ๐‘Œ = ๐‘™ ๐‘Ÿ ๐‘ฃ ๐‘ฆ, ๐‘™, ๐‘ž = ๐‘ฆ โˆ’ 1 ๐‘™ โˆ’ 1 ๐‘ž ! ๐‘Ÿ &#! ๐‘ž Hy Hyper ergeo eomet etric ic ! '#! ๐น ๐‘Œ = ๐‘œ ๐‘™ & "#& โ„Ž ๐‘‚, ๐‘™, ๐‘œ, ๐‘ฆ = ' ๐‘‚ " XC 2020

  4. How Much Does a Hershey Kiss Weight? ยง A single standard Hershey's Kiss weighs 0.16 ounces. XC 2020

  5. Same ๐œˆ , different ๐œ . Ho How t to m mea easu sure the t q qualit ity o of ? prod oduct cts? XC 2020

  6. Home Made Versus Factory Made XC 2020

  7. Variance of Discrete Random Variables ยง Let ๐‘Œ be a numerically-valued random variable with expected value ๐œˆ = ๐น(๐‘Œ) . Then the variance of ๐‘Œ , denoted by ๐‘Š(๐‘Œ) , is ๐‘Š ๐‘Œ = ๐น((๐‘Œ โˆ’ ๐œˆ) ( ) . Ex Expected value ๐‘ญ(๐’€) Va Variance ๐‘Š ๐‘Œ : ๐‘ฆ๐‘›(๐‘ฆ) %โˆˆ) (๐‘ฆ โˆ’ ๐œˆ) * ๐‘›(๐‘ฆ) : %โˆˆ) Ex Expected value ๐‘ญ ๐”(๐’€) : ๐œš(๐‘ฆ)๐‘›(๐‘ฆ) %โˆˆ) XC 2020

  8. Variance of Discrete Random Variables ยง Let ๐‘Œ be a numerically-valued random variable with expected value ๐œˆ = ๐น(๐‘Œ) . Then the variance of ๐‘Œ , denoted by ๐‘Š(๐‘Œ) , is ๐‘Š ๐‘Œ = ๐น((๐‘Œ โˆ’ ๐œˆ) ( ) . ยง Standard deviation of ๐‘Œ , denoted by ๐ธ(๐‘Œ) , is ๐ธ ๐‘Œ = ๐‘Š(๐‘Œ) . ๐œ ( for ยง We often write ๐œ for ๐ธ(๐‘Œ) and ๐‘Š ๐‘Œ . Va Variance ๐‘Š ๐‘Œ (๐‘ฆ โˆ’ ๐œˆ) * ๐‘›(๐‘ฆ) : %โˆˆ) XC 2020

  9. Variance of Discrete Random Variables ยง Let ๐‘Œ be a numerically-valued random variable with expected value ๐œˆ = ๐น(๐‘Œ) . Then the variance of ๐‘Œ , denoted by ๐‘Š(๐‘Œ) , is Va Variance ๐‘Š ๐‘Œ ๐‘Š ๐‘Œ = ๐น((๐‘Œ โˆ’ ๐œˆ) ( ) . (๐‘ฆ โˆ’ ๐œˆ) * ๐‘›(๐‘ฆ) : %โˆˆ) ยง If ๐‘Œ is any random variable with ๐œˆ = ๐น(๐‘Œ) , then ๐‘ฆ * ๐‘›(๐‘ฆ) โˆ’ : : ๐‘ฆ๐‘›(๐‘ฆ) ๐‘Š ๐‘Œ = ๐น ๐‘Œ ( โˆ’ ๐œˆ ( . %โˆˆ) %โˆˆ) XC 2020

  10. Proof Let ๐‘Œ be a numerically-valued random variable with expected value ๐œˆ = ๐น(๐‘Œ) . (๐‘ฆ โˆ’ ๐œˆ) * ๐‘›(๐‘ฆ) ๐‘Š ๐‘Œ = : (๐‘ฆ โˆ’ ๐œˆ) $ ๐‘›(๐‘ฆ) ๐‘Š ๐‘Œ = $ %โˆˆ) !โˆˆ# (๐‘ฆ * โˆ’ 2๐œˆ๐‘ฆ + ๐œˆ * )๐‘›(๐‘ฆ) = : %โˆˆ) ๐‘ฆ๐‘› ๐‘ฆ + ๐œˆ * : ๐‘ฆ * ๐‘›(๐‘ฆ) โˆ’ 2๐œˆ : ๐œˆ * ๐‘› ๐‘ฆ = : ๐‘ฆ * ๐‘›(๐‘ฆ) = ๐น(๐‘Œ * ) : %โˆˆ) %โˆˆ) %โˆˆ) %โˆˆ) : ๐‘ฆ๐‘› ๐‘ฆ = ๐œˆ ๐‘ฆ๐‘› ๐‘ฆ + ๐œˆ * : ๐‘ฆ * ๐‘›(๐‘ฆ) โˆ’ 2๐œˆ : ๐œˆ * ๐‘› ๐‘ฆ %โˆˆ) ๐‘Š ๐‘Œ = : %โˆˆ) %โˆˆ) %โˆˆ) = ๐น ๐‘Œ * โˆ’ 2๐œˆ * + ๐œˆ * $ ๐‘› ๐‘ฆ = 1 = ๐น ๐‘Œ * โˆ’ ๐œˆ * !โˆˆ# XC 2020

  11. Example 1 Tos oss a coi coin head or tail 1 or 0 ๐‘› ๐‘ฆ = 1 2 ๐œˆ = ๐น ๐‘Œ = 1 2 ๐œ ( = ๐‘Š ๐‘Œ = โ‹ฏ XC 2020

  12. Example 1 Tos oss a coi coin head or tail 1 or 0 ๐‘› ๐‘ฆ = 1 2 ๐œˆ = ๐น ๐‘Œ = 1 2 ๐œ ( = ๐‘Š ๐‘Œ = 1 4 XC 2020

  13. Example 2 Rol oll a dice ce 1, 2, 3, 4, 5, or 6 ๐‘› ๐‘ฆ = 1 6 ๐œˆ = ๐น ๐‘Œ = 7 2 ๐œ ( = ๐‘Š ๐‘Œ = โ‹ฏ XC 2020

  14. Example 2 Rol oll a dice ce 1, 2, 3, 4, 5, or 6 ๐‘› ๐‘ฆ = 1 6 ๐œˆ = ๐น ๐‘Œ = 7 2 ๐œ ( = ๐‘Š ๐‘Œ = 91 6 โˆ’ 49 4 = 35 12 XC 2020

  15. Quiz 9 What is the expected number of dice tosses needed to get two consecutive six's? Number of tosses 2, 3, 4, โ€ฆ ๐น ๐‘Œ = ๐น ๐‘Œ 1 ๐‘„ 1 + ๐น ๐‘Œ 2 + ๐น ๐‘Œ 3 ๐‘„ 3 + ๐น ๐‘Œ 4 ๐‘„ 4 + ๐น ๐‘Œ 5 ๐‘„ 5 + ๐น ๐‘Œ 6 ๐‘„(6) ๐น ๐‘Œ = 5 6 ๐น ๐‘Œ 1 + 1 6 ๐น ๐‘Œ 6 = 5 + 1 6 (5 6 ๐น ๐‘Œ 61 + 1 6 1 + ๐น ๐‘Œ 6 ๐น(๐‘Œ|66)) ๐น ๐‘Œ = 5 + 1 6 [5 + 2 6 1 + ๐น ๐‘Œ 6 2 + ๐น ๐‘Œ 6] XC 2020

  16. Is the distribution function a must for calculating expectation? ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ’ ๐‘ธ(๐‘ฎ ๐Ÿ’ ) ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ“ ๐‘ธ(๐‘ฎ ๐Ÿ“ ) ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ‘ ๐‘ธ(๐‘ฎ ๐Ÿ‘ ) ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ” ๐‘ธ(๐‘ฎ ๐Ÿ” ) ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ ๐‘ธ(๐‘ฎ ๐Ÿ ) ๐‘ญ ๐’€ ๐‘ฎ ๐Ÿ• ๐‘ธ(๐‘ฎ ๐Ÿ• ) ๐‘ญ ๐’€ XC 2020

  17. Example 3 Consider the general Bernoulli trial process. As usual, we let ๐‘Œ = 1 if the outcome is a success and 0 if it is a failure. Expect cted value ๐‘ญ(๐’€) M ๐‘ฆ๐‘›(๐‘ฆ) = 1ร—๐‘ž + 0ร— 1 โˆ’ ๐‘ž = ๐‘ž &โˆˆ0 Ber Bernoulli t tria ial ๐‘ž, ๐‘Œ = 1 ๐‘› ๐‘ฆ = O Variance ce ๐‘Š ๐‘Œ 1 โˆ’ ๐‘ž, ๐‘Œ = 0 ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = โ‹ฏ XC 2020

  18. Example 3 Consider the general Bernoulli trial process. As usual, we let ๐‘Œ = 1 if the outcome is a success and 0 if it is a failure. Expect cted value ๐‘ญ(๐’€) M ๐‘ฆ๐‘›(๐‘ฆ) = 1ร—๐‘ž + 0ร— 1 โˆ’ ๐‘ž = ๐‘ž &โˆˆ0 Ber Bernoulli t tria ial ๐‘ž, ๐‘Œ = 1 ๐‘› ๐‘ฆ = O Variance ce ๐‘Š ๐‘Œ 1 โˆ’ ๐‘ž, ๐‘Œ = 0 ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = ๐‘ž โˆ’ ๐‘ž ( XC 2020

  19. Bin Binomia ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐น ๐‘Œ = ๐‘œ๐‘ž , ๐‘Š ๐‘Œ = ๐‘œ๐‘ž๐‘Ÿ ๐‘™ ๐‘ž ! ๐‘Ÿ "#! Ge Geometric ๐น ๐‘Œ = $ ๐‘Š ๐‘Œ = $#1 1 , ๐‘„ ๐‘ˆ = ๐‘œ = ๐‘Ÿ "#$ ๐‘ž 1 % Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐น ๐‘Œ = ๐œ‡ , ๐‘Š ๐‘Œ = ๐œ‡ ๐‘™! ๐‘“ #% Negative Ne binomi omial ๐‘ฃ ๐‘ฆ, ๐‘™, ๐‘ž = ๐‘ฆ โˆ’ 1 ๐น ๐‘Œ = ๐‘™ 2 ๐‘Š ๐‘Œ = ๐‘™ 2 1 , ๐‘™ โˆ’ 1 ๐‘ž ! ๐‘Ÿ &#! 1 % Hyper Hy ergeo eomet etric ic ! '#! ๐น ๐‘Œ = ๐‘œ ! ๐‘Š ๐‘Œ = "! '#! ('#") & "#& ' , โ„Ž ๐‘‚, ๐‘™, ๐‘œ, ๐‘ฆ = ' ' % ('#$) " XC 2020

  20. Binomial Distribution and Poisson Distribution Bi Binomial Dist stribution ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘™ ๐‘ž $ ๐‘Ÿ !"$ ๐น ๐‘Œ = ๐‘œ๐‘ž , ๐‘Š ๐‘Œ = ๐‘œ๐‘ž๐‘Ÿ Poisson Po Distribution ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ $ ๐‘™! ๐‘“ "' ๐น ๐‘Œ = ๐œ‡ , ๐‘Š ๐‘Œ = ๐œ‡ ๐‘ž = %5 " , ๐‘ข = 1 , ๐‘œ โ†’ โˆž , ๐‘ž โ†’ 0 = XC 2020

  21. Binomia Bin ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘™ ๐‘ž ! ๐‘Ÿ "#! ๐น ๐‘Œ = ๐‘œ๐‘ž Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = M ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( &โˆˆ0 " " " ๐‘™ ( ๐‘œ ๐‘™ ( ๐‘œ ๐‘œ! ๐‘™ ๐‘ž ! ๐‘Ÿ "#! = M ๐‘™ ๐‘ž ! ๐‘Ÿ "#! = M ๐‘ฆ ( ๐‘› ๐‘ฆ = M ๐‘™ ( ๐‘™! ๐‘œ โˆ’ ๐‘™ ! ๐‘ž ! ๐‘Ÿ "#! M &โˆˆ0 !67 !6$ !6$ " " (๐‘œ โˆ’ 1)! (๐‘™ โˆ’ 1 + 1) ๐‘œ โˆ’ 1 (๐‘™ โˆ’ 1)! ๐‘œ โˆ’ ๐‘™ ! ๐‘ž !#$ ๐‘Ÿ "#! = ๐‘œ๐‘ž M ๐‘™ โˆ’ 1 ๐‘ž !#$ ๐‘Ÿ "#! = M ๐‘œ๐‘ž๐‘™ !6$ !6$ "#$ ๐‘œ โˆ’ 1 "#$ ๐‘š ๐‘œ โˆ’ 1 ๐‘ž 8 ๐‘Ÿ "#$#8 + ๐‘œ๐‘ž M ๐‘ž 8 ๐‘Ÿ "#$#8 = ๐‘œ๐‘ž M ๐‘š ๐‘š 867 867 XC 2020

  22. Binomia Bin ial ๐‘ ๐‘œ, ๐‘ž, ๐‘™ = ๐‘œ ๐‘™ ๐‘ž ! ๐‘Ÿ "#! ๐น ๐‘Œ = ๐‘œ๐‘ž Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = M ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( &โˆˆ0 โˆ‘ &โˆˆ0 ๐‘ฆ ( ๐‘› ๐‘ฆ = ๐‘œ ๐‘œ โˆ’ 1 ๐‘ž ( โˆ‘ 86$ 8#$ ๐‘ž 8#$ ๐‘Ÿ "#$#8 + ๐‘œ๐‘ž = ๐‘œ ๐‘œ โˆ’ 1 ๐‘ž ( + ๐‘œ๐‘ž "#$ "#( ยง ๐œˆ ( = ๐‘œ ( ๐‘ž ( ยง โˆ‘ &โˆˆ0 ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( = ๐‘œ ๐‘œ โˆ’ 1 ๐‘ž ( + ๐‘œ๐‘ž โˆ’ ๐‘œ ( ๐‘ž ( = ๐‘œ๐‘ž(1 โˆ’ ๐‘ž) ยง XC 2020

  23. Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐น ๐‘Œ = ๐œ‡ ๐‘™! ๐‘“ #% Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = M ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( &โˆˆ0 9: 9: ๐‘™ ( ๐œ‡ ! ๐‘™ ๐œ‡ ! ๐‘™! ๐‘“ #% = M ๐‘ฆ ( ๐‘› ๐‘ฆ = M ๐‘™! ๐‘“ #% M &โˆˆ0 !67 !6$ 9: 9: ๐œ‡ !#$ ๐œ‡ !#$ (๐‘™ โˆ’ 1)! ๐‘“ #% = M (๐‘™ โˆ’ 1)! ๐‘“ #% = M ๐œ‡๐‘™ ๐œ‡(๐‘™ โˆ’ 1 + 1) !6$ !6$ 9: ๐œ‡ 8 9: ๐‘š ๐œ‡ 8 ๐‘š! ๐‘“ #% + ๐œ‡ M ๐‘š! ๐‘“ #% = ๐œ‡ M 867 867 XC 2020

  24. Po Poisson ๐‘„ ๐‘Œ = ๐‘™ = ๐œ‡ ! ๐น ๐‘Œ = ๐œ‡ ๐‘™! ๐‘“ #% Variance ce ๐‘Š ๐‘Œ ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = M ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( &โˆˆ0 9: ๐‘š % & 9: % & 9: % &'( 8! ๐‘“ #% + ๐œ‡ โˆ‘ 867 8! ๐‘“ #% = ๐œ‡ ( โˆ‘ 86$ (8#$)! ๐‘“ #% + ๐œ‡ = ๐œ‡ ( + ๐œ‡ โˆ‘ &โˆˆ0 ๐‘ฆ ( ๐‘› ๐‘ฆ = ๐œ‡ โˆ‘ 867 ยง ๐œˆ ( = ๐œ‡ ( ยง โˆ‘ &โˆˆ0 ๐‘ฆ ( ๐‘› ๐‘ฆ โˆ’ ๐œˆ ( = ๐œ‡ ( + ๐œ‡ โˆ’ ๐œ‡ ( = ๐œ‡ ยง XC 2020

  25. Linearity ๐น(๐‘Œ + ๐‘) = ๐น(๐‘Œ) + ๐น(๐‘) ๐น(๐‘‘๐‘Œ) = ๐‘‘๐น(๐‘Œ) . ๐น(๐‘๐‘Œ + ๐‘) = ๐‘๐น(๐‘Œ) + ๐‘ XC 2020

  26. Properties of Variance ยง If ๐‘Œ is any random variable and ๐‘‘ is any constant, then ๐‘Š ๐‘‘๐‘Œ = ๐‘‘ ( ๐‘Š(๐‘Œ) , ๐‘Š ๐‘Œ + ๐‘‘ = ๐‘Š(๐‘Œ) . Variance ce ๐‘Š ๐‘Œ = ๐น ๐‘Œ ( โˆ’ ๐œˆ ( = ๐น ๐‘Œ ( โˆ’ [๐น ๐‘Œ ] ( ๐น(๐‘๐‘Œ + ๐‘) = ๐‘๐น(๐‘Œ) + ๐‘ ๐‘Š ๐‘‘๐‘Œ = ๐น (๐‘‘๐‘Œ) ( โˆ’ [๐น ๐‘‘๐‘Œ ] ( XC 2020

Recommend


More recommend