MATH 20: PROBABILITY Variance of Discrete Random Variables Xingru Chen xingru.chen.gr@dartmouth.edu XC 2020
Important Distributions Hypergeometric Discrete Uniform Distribution Distribution ๐ ๐ = 1 $ &"$ % !"% โ ๐, ๐, ๐, ๐ฆ = ๐ & ! Negative Binomial Binomial Distribution Distribution ๐ ๐, ๐, ๐ = ๐ ๐ฃ ๐ฆ, ๐, ๐ ๐ ๐ $ ๐ !"$ = ๐ฆ โ 1 ๐ โ 1 ๐ $ ๐ %"$ Geometric Poisson Distribution Distribution ๐ ๐ = ๐ = ๐ $ ๐ ๐ = ๐ = ๐ !"# ๐ ๐! ๐ "' XC 2020
Binomia Bin ial ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! ๐น ๐ = ๐๐ Ge Geometric ๐น ๐ = 1 ๐ ๐ = ๐ = ๐ "#$ ๐ ๐ Po Poisson ๐ ๐ = ๐ = ๐ ! ๐น ๐ = ๐ ๐! ๐ #% Negative Ne binomi omial ๐น ๐ = ๐ ๐ ๐ฃ ๐ฆ, ๐, ๐ = ๐ฆ โ 1 ๐ โ 1 ๐ ! ๐ &#! ๐ Hy Hyper ergeo eomet etric ic ! '#! ๐น ๐ = ๐ ๐ & "#& โ ๐, ๐, ๐, ๐ฆ = ' ๐ " XC 2020
How Much Does a Hershey Kiss Weight? ยง A single standard Hershey's Kiss weighs 0.16 ounces. XC 2020
Same ๐ , different ๐ . Ho How t to m mea easu sure the t q qualit ity o of ? prod oduct cts? XC 2020
Home Made Versus Factory Made XC 2020
Variance of Discrete Random Variables ยง Let ๐ be a numerically-valued random variable with expected value ๐ = ๐น(๐) . Then the variance of ๐ , denoted by ๐(๐) , is ๐ ๐ = ๐น((๐ โ ๐) ( ) . Ex Expected value ๐ญ(๐) Va Variance ๐ ๐ : ๐ฆ๐(๐ฆ) %โ) (๐ฆ โ ๐) * ๐(๐ฆ) : %โ) Ex Expected value ๐ญ ๐(๐) : ๐(๐ฆ)๐(๐ฆ) %โ) XC 2020
Variance of Discrete Random Variables ยง Let ๐ be a numerically-valued random variable with expected value ๐ = ๐น(๐) . Then the variance of ๐ , denoted by ๐(๐) , is ๐ ๐ = ๐น((๐ โ ๐) ( ) . ยง Standard deviation of ๐ , denoted by ๐ธ(๐) , is ๐ธ ๐ = ๐(๐) . ๐ ( for ยง We often write ๐ for ๐ธ(๐) and ๐ ๐ . Va Variance ๐ ๐ (๐ฆ โ ๐) * ๐(๐ฆ) : %โ) XC 2020
Variance of Discrete Random Variables ยง Let ๐ be a numerically-valued random variable with expected value ๐ = ๐น(๐) . Then the variance of ๐ , denoted by ๐(๐) , is Va Variance ๐ ๐ ๐ ๐ = ๐น((๐ โ ๐) ( ) . (๐ฆ โ ๐) * ๐(๐ฆ) : %โ) ยง If ๐ is any random variable with ๐ = ๐น(๐) , then ๐ฆ * ๐(๐ฆ) โ : : ๐ฆ๐(๐ฆ) ๐ ๐ = ๐น ๐ ( โ ๐ ( . %โ) %โ) XC 2020
Proof Let ๐ be a numerically-valued random variable with expected value ๐ = ๐น(๐) . (๐ฆ โ ๐) * ๐(๐ฆ) ๐ ๐ = : (๐ฆ โ ๐) $ ๐(๐ฆ) ๐ ๐ = $ %โ) !โ# (๐ฆ * โ 2๐๐ฆ + ๐ * )๐(๐ฆ) = : %โ) ๐ฆ๐ ๐ฆ + ๐ * : ๐ฆ * ๐(๐ฆ) โ 2๐ : ๐ * ๐ ๐ฆ = : ๐ฆ * ๐(๐ฆ) = ๐น(๐ * ) : %โ) %โ) %โ) %โ) : ๐ฆ๐ ๐ฆ = ๐ ๐ฆ๐ ๐ฆ + ๐ * : ๐ฆ * ๐(๐ฆ) โ 2๐ : ๐ * ๐ ๐ฆ %โ) ๐ ๐ = : %โ) %โ) %โ) = ๐น ๐ * โ 2๐ * + ๐ * $ ๐ ๐ฆ = 1 = ๐น ๐ * โ ๐ * !โ# XC 2020
Example 1 Tos oss a coi coin head or tail 1 or 0 ๐ ๐ฆ = 1 2 ๐ = ๐น ๐ = 1 2 ๐ ( = ๐ ๐ = โฏ XC 2020
Example 1 Tos oss a coi coin head or tail 1 or 0 ๐ ๐ฆ = 1 2 ๐ = ๐น ๐ = 1 2 ๐ ( = ๐ ๐ = 1 4 XC 2020
Example 2 Rol oll a dice ce 1, 2, 3, 4, 5, or 6 ๐ ๐ฆ = 1 6 ๐ = ๐น ๐ = 7 2 ๐ ( = ๐ ๐ = โฏ XC 2020
Example 2 Rol oll a dice ce 1, 2, 3, 4, 5, or 6 ๐ ๐ฆ = 1 6 ๐ = ๐น ๐ = 7 2 ๐ ( = ๐ ๐ = 91 6 โ 49 4 = 35 12 XC 2020
Quiz 9 What is the expected number of dice tosses needed to get two consecutive six's? Number of tosses 2, 3, 4, โฆ ๐น ๐ = ๐น ๐ 1 ๐ 1 + ๐น ๐ 2 + ๐น ๐ 3 ๐ 3 + ๐น ๐ 4 ๐ 4 + ๐น ๐ 5 ๐ 5 + ๐น ๐ 6 ๐(6) ๐น ๐ = 5 6 ๐น ๐ 1 + 1 6 ๐น ๐ 6 = 5 + 1 6 (5 6 ๐น ๐ 61 + 1 6 1 + ๐น ๐ 6 ๐น(๐|66)) ๐น ๐ = 5 + 1 6 [5 + 2 6 1 + ๐น ๐ 6 2 + ๐น ๐ 6] XC 2020
Is the distribution function a must for calculating expectation? ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ ๐ฎ ๐ ๐ธ(๐ฎ ๐ ) ๐ญ ๐ XC 2020
Example 3 Consider the general Bernoulli trial process. As usual, we let ๐ = 1 if the outcome is a success and 0 if it is a failure. Expect cted value ๐ญ(๐) M ๐ฆ๐(๐ฆ) = 1ร๐ + 0ร 1 โ ๐ = ๐ &โ0 Ber Bernoulli t tria ial ๐, ๐ = 1 ๐ ๐ฆ = O Variance ce ๐ ๐ 1 โ ๐, ๐ = 0 ๐น ๐ ( โ ๐ ( = โฏ XC 2020
Example 3 Consider the general Bernoulli trial process. As usual, we let ๐ = 1 if the outcome is a success and 0 if it is a failure. Expect cted value ๐ญ(๐) M ๐ฆ๐(๐ฆ) = 1ร๐ + 0ร 1 โ ๐ = ๐ &โ0 Ber Bernoulli t tria ial ๐, ๐ = 1 ๐ ๐ฆ = O Variance ce ๐ ๐ 1 โ ๐, ๐ = 0 ๐น ๐ ( โ ๐ ( = ๐ โ ๐ ( XC 2020
Bin Binomia ial ๐ ๐, ๐, ๐ = ๐ ๐น ๐ = ๐๐ , ๐ ๐ = ๐๐๐ ๐ ๐ ! ๐ "#! Ge Geometric ๐น ๐ = $ ๐ ๐ = $#1 1 , ๐ ๐ = ๐ = ๐ "#$ ๐ 1 % Po Poisson ๐ ๐ = ๐ = ๐ ! ๐น ๐ = ๐ , ๐ ๐ = ๐ ๐! ๐ #% Negative Ne binomi omial ๐ฃ ๐ฆ, ๐, ๐ = ๐ฆ โ 1 ๐น ๐ = ๐ 2 ๐ ๐ = ๐ 2 1 , ๐ โ 1 ๐ ! ๐ &#! 1 % Hyper Hy ergeo eomet etric ic ! '#! ๐น ๐ = ๐ ! ๐ ๐ = "! '#! ('#") & "#& ' , โ ๐, ๐, ๐, ๐ฆ = ' ' % ('#$) " XC 2020
Binomial Distribution and Poisson Distribution Bi Binomial Dist stribution ๐ ๐, ๐, ๐ = ๐ ๐ ๐ $ ๐ !"$ ๐น ๐ = ๐๐ , ๐ ๐ = ๐๐๐ Poisson Po Distribution ๐ ๐ = ๐ = ๐ $ ๐! ๐ "' ๐น ๐ = ๐ , ๐ ๐ = ๐ ๐ = %5 " , ๐ข = 1 , ๐ โ โ , ๐ โ 0 = XC 2020
Binomia Bin ial ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! ๐น ๐ = ๐๐ Variance ce ๐ ๐ ๐น ๐ ( โ ๐ ( = M ๐ฆ ( ๐ ๐ฆ โ ๐ ( &โ0 " " " ๐ ( ๐ ๐ ( ๐ ๐! ๐ ๐ ! ๐ "#! = M ๐ ๐ ! ๐ "#! = M ๐ฆ ( ๐ ๐ฆ = M ๐ ( ๐! ๐ โ ๐ ! ๐ ! ๐ "#! M &โ0 !67 !6$ !6$ " " (๐ โ 1)! (๐ โ 1 + 1) ๐ โ 1 (๐ โ 1)! ๐ โ ๐ ! ๐ !#$ ๐ "#! = ๐๐ M ๐ โ 1 ๐ !#$ ๐ "#! = M ๐๐๐ !6$ !6$ "#$ ๐ โ 1 "#$ ๐ ๐ โ 1 ๐ 8 ๐ "#$#8 + ๐๐ M ๐ 8 ๐ "#$#8 = ๐๐ M ๐ ๐ 867 867 XC 2020
Binomia Bin ial ๐ ๐, ๐, ๐ = ๐ ๐ ๐ ! ๐ "#! ๐น ๐ = ๐๐ Variance ce ๐ ๐ ๐น ๐ ( โ ๐ ( = M ๐ฆ ( ๐ ๐ฆ โ ๐ ( &โ0 โ &โ0 ๐ฆ ( ๐ ๐ฆ = ๐ ๐ โ 1 ๐ ( โ 86$ 8#$ ๐ 8#$ ๐ "#$#8 + ๐๐ = ๐ ๐ โ 1 ๐ ( + ๐๐ "#$ "#( ยง ๐ ( = ๐ ( ๐ ( ยง โ &โ0 ๐ฆ ( ๐ ๐ฆ โ ๐ ( = ๐ ๐ โ 1 ๐ ( + ๐๐ โ ๐ ( ๐ ( = ๐๐(1 โ ๐) ยง XC 2020
Po Poisson ๐ ๐ = ๐ = ๐ ! ๐น ๐ = ๐ ๐! ๐ #% Variance ce ๐ ๐ ๐น ๐ ( โ ๐ ( = M ๐ฆ ( ๐ ๐ฆ โ ๐ ( &โ0 9: 9: ๐ ( ๐ ! ๐ ๐ ! ๐! ๐ #% = M ๐ฆ ( ๐ ๐ฆ = M ๐! ๐ #% M &โ0 !67 !6$ 9: 9: ๐ !#$ ๐ !#$ (๐ โ 1)! ๐ #% = M (๐ โ 1)! ๐ #% = M ๐๐ ๐(๐ โ 1 + 1) !6$ !6$ 9: ๐ 8 9: ๐ ๐ 8 ๐! ๐ #% + ๐ M ๐! ๐ #% = ๐ M 867 867 XC 2020
Po Poisson ๐ ๐ = ๐ = ๐ ! ๐น ๐ = ๐ ๐! ๐ #% Variance ce ๐ ๐ ๐น ๐ ( โ ๐ ( = M ๐ฆ ( ๐ ๐ฆ โ ๐ ( &โ0 9: ๐ % & 9: % & 9: % &'( 8! ๐ #% + ๐ โ 867 8! ๐ #% = ๐ ( โ 86$ (8#$)! ๐ #% + ๐ = ๐ ( + ๐ โ &โ0 ๐ฆ ( ๐ ๐ฆ = ๐ โ 867 ยง ๐ ( = ๐ ( ยง โ &โ0 ๐ฆ ( ๐ ๐ฆ โ ๐ ( = ๐ ( + ๐ โ ๐ ( = ๐ ยง XC 2020
Linearity ๐น(๐ + ๐) = ๐น(๐) + ๐น(๐) ๐น(๐๐) = ๐๐น(๐) . ๐น(๐๐ + ๐) = ๐๐น(๐) + ๐ XC 2020
Properties of Variance ยง If ๐ is any random variable and ๐ is any constant, then ๐ ๐๐ = ๐ ( ๐(๐) , ๐ ๐ + ๐ = ๐(๐) . Variance ce ๐ ๐ = ๐น ๐ ( โ ๐ ( = ๐น ๐ ( โ [๐น ๐ ] ( ๐น(๐๐ + ๐) = ๐๐น(๐) + ๐ ๐ ๐๐ = ๐น (๐๐) ( โ [๐น ๐๐ ] ( XC 2020
Recommend
More recommend