ly emission in low metallicity galaxies at z 2
play

Ly Emission in Low Metallicity Galaxies at z ~2 Dawn Erb - PowerPoint PPT Presentation

Ly Emission in Low Metallicity Galaxies at z ~2 Dawn Erb University of Wisconsin-Milwaukee Tokyo Spring Cosmic Ly Workshop March 27, 2018 Collaborators Danielle Berg University of Wisconsin-Milwaukee Ohio State University Naveen


  1. Ly ๐›ƒ Emission in Low Metallicity Galaxies at z ~2 Dawn Erb University of Wisconsin-Milwaukee Tokyo Spring Cosmic Ly ๐›ƒ Workshop March 27, 2018

  2. Collaborators Danielle Berg University of Wisconsin-Milwaukee Ohio State University Naveen Reddy (UC Riverside) Chuck Steidel (Caltech) Alice Shapley (UCLA) Max Pettini (Cambridge) Gabriel Brammer (STSci) Allison Strom (Carnegie) David Kaplan (UW-Milwaukee) Ryan Trainor (Franklin & Marshall)

  3. Ly ๐›ƒ emission stronger at low metallicity 0 . 030 Extreme KBSS 0 . 025 1 . 0 Green Peas 0 . 020 Relative number 0 . 015 0 . 5 0 . 010 Log ([O III]/H ฮฒ ) 0 . 005 0 . 000 โˆ’ 60 โˆ’ 40 โˆ’ 20 0 20 40 60 80 100 120 140 160 180 0 . 0 Ly ฮฑ equivalent width (หš A) 1 . 0 0 . 9 โˆ’ 0 . 5 0 . 8 Extreme KBSS โˆ’ 1 . 0 0 . 7 Green Peas โˆ’ 1 . 8 โˆ’ 1 . 6 โˆ’ 1 . 4 โˆ’ 1 . 2 โˆ’ 1 . 0 โˆ’ 2 . 0 โˆ’ 1 . 5 โˆ’ 1 . 0 โˆ’ 0 . 5 0 . 0 0 . 5 Log ([N II]/H ฮฑ ) Erb et al 2016 see also Trainor et al 2016

  4. Relationships between strength and line profile Ly ๐›ƒ equivalent width anti-correlated with velocity o ff set Double peaks unresolved at low resolution Erb et al 2014

  5. Diversity among Ly ๐›ƒ -emitters 3 arcsec HST WFC3 F160W Law et al 2012 Q2343-BX418 Q2343-BX660 M โ˜… = 5 x 10 9 M โฆฟ M โ˜… = 2 x 10 9 M โฆฟ SFR = 50 M โฆฟ yr -1 SFR = 23 M โฆฟ yr -1 SSFR = 18 Gyr -1 SSFR = 4 Gyr -1 12 + log(O/H) = 8.08 (T e ) 12 + log(O/H) = 8.13 (T e ) O32 = 9.66 O32 = 10.98 O/H, O32 from Steidel et al 2014

  6. Ly ๐›ƒ profile variations BX418 with VLT XSHOOTER 5 R=6200 Archival data, Terlevich et al 2015 4 18 LRIS 3 600-line grism Flux 16 2 14 1 12 0 Normalized Flux โˆ’ 2000 โˆ’ 1500 โˆ’ 1000 โˆ’ 500 0 500 1000 1500 2000 10 Velocity (km s โˆ’ 1 ) 8 6 BX418 4 BX660 2 0 โˆ’ 3000 โˆ’ 2000 โˆ’ 1000 0 1000 2000 3000 Velocity (km s โˆ’ 1 ) Erb et al 2018a, in prep

  7. Absorption lines trace variations in outflows 1 . 4 BX418 BX660 1 . 2 1 . 0 Normalized Flux 0 . 8 0 . 6 0 . 4 Si IV ฮป 1394 Si IV ฮป 1403 0 . 2 0 . 0 โˆ’ 2000 โˆ’ 1000 0 1000 2000 3000 Velocity (km s โˆ’ 1 ) Erb et al 2018a, in prep

  8. Absorption lines trace variations in outflows 1 . 4 1 . 4 1 . 2 1 . 2 Normalized Flux BX418 1 . 0 1 . 0 BX660 0 . 8 0 . 8 0 . 6 0 . 6 Si II ฮป 1304 0 . 4 0 . 4 Si II ฮป 1260 O I ฮป 1302 0 . 2 0 . 2 0 . 0 0 . 0 โˆ’ 1500 โˆ’ 1000 โˆ’ 500 0 500 1000 1500 โˆ’ 1500 โˆ’ 1000 โˆ’ 500 0 500 1000 1500 Velocity (km s โˆ’ 1 ) Velocity (km s โˆ’ 1 ) 1 . 4 1 . 4 1 . 2 1 . 2 1 . 0 1 . 0 0 . 8 0 . 8 0 . 6 0 . 6 0 . 4 0 . 4 C II ฮป 1334 Si II ฮป 1527 0 . 2 0 . 2 0 . 0 0 . 0 โˆ’ 1500 โˆ’ 1000 โˆ’ 500 0 500 1000 1500 โˆ’ 1500 โˆ’ 1000 โˆ’ 500 0 500 1000 1500 Velocity (km s โˆ’ 1 ) Velocity (km s โˆ’ 1 ) Erb et al 2018a, in prep

  9. Analysis of larger sample underway 18 6 16 Q0142-BX165 Q0207-BX144 5 Flux density ( ยต Jy) Flux density ( ยต Jy) 14 W Ly ฮฑ = 61 หš A W Ly ฮฑ = 38 หš A 12 4 10 3 8 6 2 4 1 2 0 0 1200 1205 1210 1215 1220 1225 1230 1200 1205 1210 1215 1220 1225 1230 Rest Wavelength (หš Rest Wavelength (หš A) A) 5 10 Q0207-BX87 Q0207-BX74 Flux density ( ยต Jy) Flux density ( ยต Jy) 4 W Ly ฮฑ = 78 หš A W Ly ฮฑ = 102 หš A 8 3 6 2 4 C II ฮป 1334 1 2 0 0 1200 1205 1210 1215 1220 1225 1230 1200 1205 1210 1215 1220 1225 1230 Rest Wavelength (หš Rest Wavelength (หš A) A) Erb et al 2018a, in prep

  10. Implications and next steps Otherwise similar low metallicity galaxies have varying CGM properties: relevant to LyC escape 1 Low metallicity and high ionization necessary but not su ffi cient Expanding the sample: what can we learn from the most extreme objects? 2 New results from KCWI: what can we learn from integral field spectroscopy?

  11. Low metallicity and high ionization at z=1.85 1 Berg et al 2018, arxiv:1803.02340

  12. Ly ๐›ƒ emission does not require outflows 1 . 6 Average Absorption Low Ionization 1 . 4 High Ionization Normalized Flux OIII] ฮป 1660 OIII] ฮป 1666 1 . 2 1 . 0 0 . 8 0 . 6 โˆ’ 1000 โˆ’ 500 0 500 1000 Velocity km s โˆ’ 1 See also Jaskot et al 2017 Berg et al 2018, arxiv:1803.02340

  13. Narrowband Ly ๐›ƒ imaging with HST Ly ๐›ƒ + continuum Continuum-subtracted Ly ๐›ƒ O ff -line continuum Spectroscopic slit losses ~30% Ly ๐›ƒ equivalent width 190 ร… , escape fraction ~10% Di ff erential lensing magnification? Erb et al 2018b, in prep

  14. Spatially extended Ly ๐›ƒ Erb et al 2018b, in prep

  15. Q2343-BX418 with KCWI preliminary 2 30 kpc Erb et al 2018c, in prep

  16. Q2343-BX418 with KCWI 30 kpc Erb et al 2018c, in prep

  17. Mapping the Ly ๐›ƒ peak ratio Erb et al 2018c, in prep

  18. Mapping the Ly ๐›ƒ peak ratio โˆ† v peak = 600 km s โˆ’ 1 Erb et al 2018c, in prep

  19. Mapping the Ly ๐›ƒ peak ratio โˆ† v peak = 450 km s โˆ’ 1 Erb et al 2018c, in prep

  20. Mapping the Ly ๐›ƒ peak separation Erb et al 2018c, in prep

  21. What does it mean? Spatial variations in Ly ๐›ƒ profile depend on - column density and covering fraction of neutral hydrogen - variations in outflow velocity, including projection e ff ects Full modeling required

  22. Summary Q2343-BX418 Ly ๐›ƒ emission stronger at low metallicity, Q2343-BX660 40 SL2S J0217 but CGM properties vary widely 30 Normalized Flux Important for LyC escape 20 Low metallicity and high ionization 10 necessary but not su ffi cient 0 โˆ’ 3000 โˆ’ 2000 โˆ’ 1000 0 1000 2000 3000 Velocity (km s โˆ’ 1 ) Next steps: Quantify diversity in low mass samples Expand dynamic range to most extreme objects Map the CGM with emission Ly ๐›ƒ

Recommend


More recommend