Coefficients Examples Error Sum of Squares Coefficient of Determination n n ∂ f = ∂ [ y i − ( b 0 + b 1 x i )] ! [ y i − ( b 0 + b 1 x i )] 2 ∑ ∑ = − 2 = 0 ∂ b 0 ∂ b 0 i = 1 i = 1 n n ∂ f = ∂ x i [ y i − ( b 0 + b 1 x i )] ! [ y i − ( b 0 + b 1 x i )] 2 ∑ ∑ = = 0 − 2 ∂ b 1 ∂ b 1 i = 1 i = 1 n n ∑ ∑ y i − nb 0 − b 1 x i = 0 i = 1 i = 1 n n n x 2 ∑ ∑ ∑ = x i y i − b 0 x i − b 1 0 i i = 1 i = 1 i = 1 n n ∑ ∑ nb 0 + b 1 x i = y i i = 1 i = 1 n n n x 2 ∑ ∑ ∑ x i + b 1 = b 0 x i y i i i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n ∑ ∑ nb 0 + b 1 = x i y i i = 1 i = 1 n n n ∑ ∑ x 2 ∑ b 0 x i + b 1 = x i y i i i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n ∑ ∑ nb 0 + b 1 = x i y i i = 1 i = 1 n n n ∑ ∑ x 2 ∑ b 0 x i + b 1 = x i y i i i = 1 i = 1 i = 1 � � n n 1 ∑ ∑ = b 0 y i − b 1 x i n i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n ∑ ∑ nb 0 + b 1 = x i y i i = 1 i = 1 n n n ∑ ∑ x 2 ∑ b 0 x i + b 1 = x i y i i i = 1 i = 1 i = 1 � � n n 1 ∑ ∑ = b 0 y i − b 1 x i n i = 1 i = 1 � � n n n n n 1 x 2 ∑ ∑ ∑ ∑ ∑ x i + b 1 = y i − b 1 x i x i y i i n i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n ∑ ∑ nb 0 + b 1 = x i y i i = 1 i = 1 n n n ∑ ∑ x 2 ∑ b 0 x i + b 1 = x i y i i i = 1 i = 1 i = 1 � � n n 1 ∑ ∑ = b 0 y i − b 1 x i n i = 1 i = 1 � � n n n n n 1 x 2 ∑ ∑ ∑ ∑ ∑ x i + b 1 = y i − b 1 x i x i y i i n i = 1 i = 1 i = 1 i = 1 i = 1 � 2 � n n n n n i − 1 x i y i − 1 x 2 ∑ ∑ ∑ ∑ ∑ b 1 x i = y i x i n n i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i = b 1 � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i = b 1 � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 ∑ n i = 1 x i y i − ∑ n i = 1 y i x = � ∑ n i = 1 x 2 i − ∑ n � i = 1 x i x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i = b 1 � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 ∑ n i = 1 x i y i − ∑ n i = 1 y i x = � ∑ n i = 1 x 2 i − ∑ n � i = 1 x i x ∑ n i = 1 y i ( x i − x ) − ∑ n i = 1 y ( x i − x ) = ∑ n i = 1 x i ( x i − x ) − ∑ n i = 1 x ( x i − x ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i = b 1 � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 ∑ n i = 1 x i y i − ∑ n i = 1 y i x = � ∑ n i = 1 x 2 i − ∑ n � i = 1 x i x ∑ n i = 1 y i ( x i − x ) − ∑ n i = 1 y ( x i − x ) = ∑ n i = 1 x i ( x i − x ) − ∑ n i = 1 x ( x i − x ) ∑ n i = 1 ( x i − x )( y i − y ) = i = 1 ( x i − x ) 2 ∑ n logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i = b 1 � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 ∑ n i = 1 x i y i − ∑ n i = 1 y i x = � ∑ n i = 1 x 2 i − ∑ n � i = 1 x i x ∑ n i = 1 y i ( x i − x ) − ∑ n i = 1 y ( x i − x ) = ∑ n i = 1 x i ( x i − x ) − ∑ n i = 1 x ( x i − x ) ∑ n i = 1 ( x i − x )( y i − y ) = i = 1 ( x i − x ) 2 ∑ n = b 0 y − b 1 x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n i = 1 x i � i = 1 x i ) 2 � ∑ n i − 1 n ( ∑ n i = 1 x 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n = ∑ n i = 1 x i i = 1 ( x i − x )( y i − y ) � i = 1 x i ) 2 � i = 1 ( x i − x ) 2 ∑ n ∑ n i − 1 n ( ∑ n i = 1 x 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n = ∑ n i = 1 x i i = 1 ( x i − x )( y i − y ) = S xy � i = 1 x i ) 2 � i = 1 ( x i − x ) 2 ∑ n S xx ∑ n i − 1 n ( ∑ n i = 1 x 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n = ∑ n i = 1 x i i = 1 ( x i − x )( y i − y ) = S xy � i = 1 x i ) 2 � i = 1 ( x i − x ) 2 ∑ n S xx ∑ n i − 1 n ( ∑ n i = 1 x 2 2. b 0 = y − b 1 x logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n = ∑ n i = 1 x i i = 1 ( x i − x )( y i − y ) = S xy � i = 1 x i ) 2 � i = 1 ( x i − x ) 2 ∑ n S xx ∑ n i − 1 n ( ∑ n i = 1 x 2 2. b 0 = y − b 1 x y i : = ˆ β 0 + ˆ β 1 x i . 3. Fitted (or predicted) values: ˆ logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Summarizing the Formulas 1. b 1 = ∑ n i = 1 x i y i − 1 n ∑ n i = 1 y i ∑ n = ∑ n i = 1 x i i = 1 ( x i − x )( y i − y ) = S xy � i = 1 x i ) 2 � i = 1 ( x i − x ) 2 ∑ n S xx ∑ n i − 1 n ( ∑ n i = 1 x 2 2. b 0 = y − b 1 x y i : = ˆ β 0 + ˆ β 1 x i . 3. Fitted (or predicted) values: ˆ 4. Residuals: y i − ˆ y i . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 Estimate of σ 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 y i ) 2 n − 2 = ∑ n i = 1 ( y i − ˆ σ 2 = s 2 = SSE Estimate of σ 2 : ˆ . n − 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 y i ) 2 n − 2 = ∑ n i = 1 ( y i − ˆ σ 2 = s 2 = SSE Estimate of σ 2 : ˆ . n − 2 2. We divide by n − 2 because we have only n − 2 degrees of freedom after determining two parameters ˆ β 0 and ˆ β 1 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 y i ) 2 n − 2 = ∑ n i = 1 ( y i − ˆ σ 2 = s 2 = SSE Estimate of σ 2 : ˆ . n − 2 2. We divide by n − 2 because we have only n − 2 degrees of freedom after determining two parameters ˆ β 0 and ˆ β 1 . (Previously, using an estimate of µ resulted in the loss of one degree of freedom.) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination How Well Does the Line Fit the Data? 1. Error sum of squares (or residual sum of squares). n n �� 2 y i ) 2 = � � β 0 + ˆ ˆ ∑ ∑ SSE = ( y i − ˆ β 1 x i y i − i = 1 i = 1 y i ) 2 n − 2 = ∑ n i = 1 ( y i − ˆ σ 2 = s 2 = SSE Estimate of σ 2 : ˆ . n − 2 2. We divide by n − 2 because we have only n − 2 degrees of freedom after determining two parameters ˆ β 0 and ˆ β 1 . (Previously, using an estimate of µ resulted in the loss of one degree of freedom.) 3. It can be shown (we cannot present the proof) that S 2 is an unbiased estimator for σ 2 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE SSE logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n y i ) 2 ∑ = ( y i − ˆ SSE i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n y i ) 2 ∑ = ( y i − ˆ SSE i = 1 n �� 2 � � β 0 + ˆ ˆ ∑ = y i − β 1 x i i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n y i ) 2 ∑ = ( y i − ˆ SSE i = 1 n �� 2 � � β 0 + ˆ ˆ ∑ = y i − β 1 x i i = 1 n i − 2 ˆ β 0 y i − 2 ˆ β 1 x i y i + ˆ 0 + 2 ˆ β 0 ˆ β 1 x i + ˆ y 2 β 2 β 2 1 x 2 ∑ = i i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n y i ) 2 ∑ = ( y i − ˆ SSE i = 1 n �� 2 � � β 0 + ˆ ˆ ∑ = y i − β 1 x i i = 1 n i − 2 ˆ β 0 y i − 2 ˆ β 1 x i y i + ˆ 0 + 2 ˆ β 0 ˆ β 1 x i + ˆ y 2 β 2 β 2 1 x 2 ∑ = i i = 1 n n n n n i − 2 ˆ y i − 2 ˆ x i y i + n ˆ 0 + 2 ˆ β 0 ˆ x i + ˆ ∑ y 2 ∑ ∑ β 2 ∑ β 2 ∑ x 2 = β 0 β 1 β 1 1 i i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n n n n n i − 2 ˆ y i − 2 ˆ x i y i + n ˆ 0 + 2 ˆ β 0 ˆ x i + ˆ y 2 β 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n n n n n i − 2 ˆ y i − 2 ˆ x i y i + n ˆ 0 + 2 ˆ β 0 ˆ x i + ˆ y 2 β 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 � � n n n n n y 2 i − 2 ˆ y i − 2 ˆ x i y i + ˆ y i − ˆ ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 0 β 1 x i i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n n n n n i − 2 ˆ y i − 2 ˆ x i y i + n ˆ 0 + 2 ˆ β 0 ˆ x i + ˆ y 2 β 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 � � n n n n n y 2 i − 2 ˆ y i − 2 ˆ x i y i + ˆ y i − ˆ ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 0 β 1 x i i = 1 i = 1 i = 1 i = 1 i = 1 n n + 2 ˆ β 0 ˆ x i + ˆ β 2 x 2 ∑ ∑ β 1 1 i i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Formula For SSE n n n n n i − 2 ˆ y i − 2 ˆ x i y i + n ˆ 0 + 2 ˆ β 0 ˆ x i + ˆ y 2 β 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 � � n n n n n y 2 i − 2 ˆ y i − 2 ˆ x i y i + ˆ y i − ˆ ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 0 β 1 x i i = 1 i = 1 i = 1 i = 1 i = 1 n n + 2 ˆ β 0 ˆ x i + ˆ β 2 x 2 ∑ ∑ β 1 1 i i = 1 i = 1 n n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ x i + ˆ y 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 1 i i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ x i + ˆ y 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ x i + ˆ y 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ ∑ y 2 ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � 2 � n n i ± 1 + ˆ β 2 x 2 ∑ ∑ x i 1 n i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ x i + ˆ y 2 β 2 x 2 ∑ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE 1 i i = 1 i = 1 i = 1 i = 1 i = 1 n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ ∑ y 2 ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � 2 � n n i ± 1 + ˆ β 2 x 2 ∑ ∑ x i 1 n i = 1 i = 1 n n n n y 2 i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ ∑ ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � 2 � 2 � � n n n i − 1 1 + ˆ β 2 x 2 + ˆ β 2 ∑ ∑ ∑ x i x i 1 1 n n i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE x i i = 1 i = 1 i = 1 i = 1 � 2 � 2 � � n n n i − 1 1 + ˆ β 2 x 2 + ˆ β 2 ∑ ∑ ∑ x i x i 1 1 n n i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE x i i = 1 i = 1 i = 1 i = 1 � 2 � 2 � � n n n i − 1 1 + ˆ β 2 x 2 + ˆ β 2 ∑ ∑ ∑ x i x i 1 1 n n i = 1 i = 1 i = 1 n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ ∑ y 2 ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � 2 � � � n n n n x i y i − 1 1 + ˆ + ˆ β 2 ∑ ∑ ∑ ∑ β 1 y i x i x i 1 n n i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE x i i = 1 i = 1 i = 1 i = 1 � 2 � � � n n n n x i y i − 1 1 + ˆ + ˆ β 2 ∑ ∑ ∑ ∑ β 1 y i x i x i 1 n n i = 1 i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE x i i = 1 i = 1 i = 1 i = 1 � 2 � � � n n n n x i y i − 1 1 + ˆ + ˆ β 2 ∑ ∑ ∑ ∑ β 1 y i x i x i 1 n n i = 1 i = 1 i = 1 i = 1 n n n n i − ˆ y i − ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � � n n n 1 1 − ˆ y i − ˆ ∑ ∑ ∑ β 1 β 1 x i x i n n i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination n n n n i − ˆ y i − 2 ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 SSE x i i = 1 i = 1 i = 1 i = 1 � 2 � � � n n n n x i y i − 1 1 + ˆ + ˆ β 2 ∑ ∑ ∑ ∑ β 1 y i x i x i 1 n n i = 1 i = 1 i = 1 i = 1 n n n n i − ˆ y i − ˆ x i y i + ˆ β 0 ˆ y 2 ∑ ∑ ∑ ∑ = β 0 β 1 β 1 x i i = 1 i = 1 i = 1 i = 1 � � n n n 1 1 − ˆ y i − ˆ ∑ ∑ ∑ β 1 β 1 x i x i n n i = 1 i = 1 i = 1 n n n i − ˆ y i − ˆ ∑ y 2 ∑ ∑ = β 0 β 1 x i y i i = 1 i = 1 i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. SSE ≈ 1 . 1194 and s 2 ≈ 0 . 0622 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2. SSE ≈ 79 . 7958 and s 2 ≈ 4 . 4331 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. ∑ 1. Let SST : = i = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. The ∑ 1. Let SST : = i = 1 coefficient of determination is given by r 2 = 1 − SSE SST . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. The ∑ 1. Let SST : = i = 1 coefficient of determination is given by r 2 = 1 − SSE SST . 2. SSE measures how much variation is not attributed to the linear relationship. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. The ∑ 1. Let SST : = i = 1 coefficient of determination is given by r 2 = 1 − SSE SST . 2. SSE measures how much variation is not attributed to the linear relationship. 3. SST measures the total variation in y . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. The ∑ 1. Let SST : = i = 1 coefficient of determination is given by r 2 = 1 − SSE SST . 2. SSE measures how much variation is not attributed to the linear relationship. 3. SST measures the total variation in y . 4. The quotient gives the proportion of the variation not attributed to the linear relationship. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Coefficient of Determination n ( y i − y ) 2 be the total sum of squares. The ∑ 1. Let SST : = i = 1 coefficient of determination is given by r 2 = 1 − SSE SST . 2. SSE measures how much variation is not attributed to the linear relationship. 3. SST measures the total variation in y . 4. The quotient gives the proportion of the variation not attributed to the linear relationship. 5. r 2 gives the proportion of the variation that is attributed to the linear relationship. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 1. r 2 ≈ . 9516 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Coefficients Examples Error Sum of Squares Coefficient of Determination Example 2. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Linear Regression - Estimating Parameters
Recommend
More recommend