Information Geometry and its Applications IV June 12-17, 2016, Liblice, Czech In honor of Professor Amari Information geometry associated with two generalized means Shinto Eguchi Institute of Statistical Mathematics A joint work with Osamu Komori and Atsumi Ohara University of Fukui
Outline Information geometry Generalized information geometry 2
The core of information geometry Pythagoras (Amari-Nagaoka, 2001) 3
Metric and connections Information metric m-connection e-connection Conjugate Dawid (1975), Amari (1982) Rao (1945), 4
Exponential model Exponential model Mean parameter Remark 1 Amari (1982) Remark 2 5
Minimum KL leaf Exponential model Mean equal space 6
Pythagoras foliation 7
KL divergence (revisited) The normalizing constant We observe Cf. Ay-Amari (2015) KL divergence is induced by e-geodesic Cf . the canonical divergence , Amari-Nagaoka (2001) 8
(log , exp) (log, exp) KL-divergence e-geodesic m-geodesic Pythagoras identity exponential model Pythagoras foliation mean equal space 9
( log, exp) ( , ) ¥ 10
Kolmogorov-Nagumo mean Cf. Kolmogorov(1930), Nagumo (1930), Naudts (2009) 11
Generalized e-geodesic Remark 12
13 Generalized KL-divergence
14 Generalized m-geodesic Remark
Metric and connections by D ( ) Riemannian metric Generalized m-connection Generalized e-connection Remark 15
Generalized two geodesic curves 16
Pythagorean theorem Pythagoras theorem 17
Power-log function 18
Generalized exponential model G-exponential model Mean parameter Cf. Naudts (2010) Remark 1 Cf. Matsuzoe-Henmi (2014) Remark 2 19
Minimum GKL leaf G-exponential model Mean equal space 20
Generalized Pythagoras foliation 21
( log , exp ) ( Cf. Newton (2012) 22
Expected density Consider Let Then Therefore 23
Quasi divergence Remark 24
Another generalization of KL-divergence One adjustment The other adjustment 25
Gamma divergence Remark Fujisawa-Eguchi (2008) 26
-geometry m-geodesic G-e-geodesic Pythagoras 27 27
Metric and connections by ( ) Riemannian metric Generalized m-connection Generalized e-connection Remark 28
Minimum estimation Model Data set Loss function Proposed estimator Expected loss consistency Estimation selection, Robustness, Spontaneous data learning 29 29
Non-convex learning Model Loss function Selection of 30
Spontaneous data learning The consistent class of estimators Super robustness Redescending Influence function Multi modal detection Difference of convex functions two local minima Estimation selection than model selection 31 31
Concluding remarks ( 32
Welcome to any comments: eguchi@ism.ac.jp 33
U -divergence U- cross-entropy U- entropy U- divergence Note Exm 34
Generalized exponential model (ver. 2) G-exponential model Mean parameter Remark 1 Remark 2 35
Recommend
More recommend