in honor of professor amari
play

In honor of Professor Amari Information geometry associated with - PowerPoint PPT Presentation

Information Geometry and its Applications IV June 12-17, 2016, Liblice, Czech In honor of Professor Amari Information geometry associated with two generalized means Shinto Eguchi Institute of Statistical Mathematics A joint work with Osamu


  1. Information Geometry and its Applications IV June 12-17, 2016, Liblice, Czech In honor of Professor Amari Information geometry associated with two generalized means Shinto Eguchi Institute of Statistical Mathematics A joint work with Osamu Komori and Atsumi Ohara University of Fukui

  2. Outline Information geometry Generalized information geometry 2

  3. The core of information geometry Pythagoras (Amari-Nagaoka, 2001) 3

  4. Metric and connections Information metric m-connection e-connection Conjugate Dawid (1975), Amari (1982) Rao (1945), 4

  5. Exponential model Exponential model Mean parameter Remark 1 Amari (1982) Remark 2 5

  6. Minimum KL leaf Exponential model Mean equal space 6

  7. Pythagoras foliation 7

  8. KL divergence (revisited) The normalizing constant We observe Cf. Ay-Amari (2015) KL divergence is induced by e-geodesic Cf . the canonical divergence , Amari-Nagaoka (2001) 8

  9. (log , exp) (log, exp) KL-divergence e-geodesic m-geodesic Pythagoras identity exponential model Pythagoras foliation mean equal space 9

  10. ( log, exp) (  ,  ) ¥ 10

  11. Kolmogorov-Nagumo mean Cf. Kolmogorov(1930), Nagumo (1930), Naudts (2009) 11

  12. Generalized e-geodesic Remark 12

  13. 13 Generalized KL-divergence

  14. 14 Generalized m-geodesic Remark

  15. Metric and connections by D (  ) Riemannian metric Generalized m-connection Generalized e-connection Remark 15

  16. Generalized two geodesic curves 16

  17.  Pythagorean theorem Pythagoras theorem 17

  18. Power-log function 18

  19. Generalized exponential model G-exponential model Mean parameter Cf. Naudts (2010) Remark 1 Cf. Matsuzoe-Henmi (2014) Remark 2 19

  20. Minimum GKL leaf G-exponential model Mean equal space 20

  21. Generalized Pythagoras foliation 21

  22. ( log , exp ) (  Cf. Newton (2012) 22

  23. Expected  density Consider Let Then Therefore 23

  24. Quasi divergence Remark 24

  25. Another generalization of KL-divergence One adjustment The other adjustment 25

  26. Gamma divergence Remark Fujisawa-Eguchi (2008) 26

  27.     -geometry m-geodesic G-e-geodesic Pythagoras 27 27

  28. Metric and connections by  (  ) Riemannian metric Generalized m-connection Generalized e-connection Remark 28

  29. Minimum     estimation Model Data set Loss function Proposed estimator Expected loss consistency Estimation selection, Robustness, Spontaneous data learning 29 29

  30. Non-convex learning Model Loss function Selection of  30

  31. Spontaneous data learning The consistent class of estimators Super robustness Redescending Influence function Multi modal detection Difference of convex functions two local minima Estimation selection than model selection 31 31

  32. Concluding remarks (  32

  33.  Welcome to any comments: eguchi@ism.ac.jp 33

  34. U -divergence U- cross-entropy U- entropy U- divergence Note Exm 34

  35. Generalized exponential model (ver. 2) G-exponential model Mean parameter Remark 1 Remark 2 35

Recommend


More recommend