conference in honor of professor amari riemannian
play

Conference in honor of Professor Amari Riemannian interpretation of - PowerPoint PPT Presentation

Conference in honor of Professor Amari Riemannian interpretation of Wasserstein geometry Felix Otto Max Planck Institute for Mathematics in the Sciences Leipzig, Germany Arnold 66: Geometrization of fluid dynamics Eulers equations for


  1. Conference in honor of Professor Amari Riemannian interpretation of Wasserstein geometry Felix Otto Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

  2. Arnol’d ’66: Geometrization of fluid dynamics Euler’s equations for incompressible inviscid fluid, x ∈ M = T d : u = u ( t, x ) ∈ R d ∇ · u = 0 , Eulerian velocity ∂ t u + u · ∇ u + ∇ p = 0 , p = p ( t, x ) ∈ R pressure (Formal) Riemannian manifold: M := { Φ diffeomorphism | Φ# dx = dx } ⊂ L 2 ( T d , R d ) For curve Φ( t, · ) in M , consider vector field u ( t, · ) given by ∂ t Φ( t, · ) = u ( t, · ) ◦ Φ( t, · ), then Φ is geodesic in M ⇐ ⇒ u satisfies Euler’s equations

  3. Arnol’d ’66: an easy calculation Euler’s equations: ∇ · u = 0, ∂ t u + u · ∇ u + ∇ p = 0. M := { Φ diffeomorphism | Φ# dx = dx } = { Φ diffeomorphism | det D Φ ≡ 1 } ⊂ L 2 ( T d , R d ). Φ is geodesic in M ⇐ ⇒ u satisfies Euler’s equations, where ∂ t Φ ( t ) = u ( t ) ◦ Φ ( t ) . Liouville: ∂ t det D Φ ( t ) = ( ∇ · u ) ( t ) ◦ φ ( t ) det D Φ ( t ) Acceler. Lagrange vs Euler : ∂ 2 t Φ ( t ) = ( ∂ t + u · ∇ u ) ( t ) ◦ Φ ( t ) .

  4. Arnol’d ’66: curvature can get very negative ... u satisfies Euler’s equations ⇐ ⇒ Φ is geodesic in M where ∂ t Φ( t ) = u ( t ) ◦ Φ( t ). M := { Φ diffeom. | Φ# dx = dx } = { Φ diffeom. | det D Φ ≡ 1 } ⊂ L 2 ( T d , R d ). Tangent space in Φ: T Φ M = { u ◦ Φ |∇· u = 0 } � = { u |∇ · u = 0 } Liouville: ∂ t det D Φ( t ) = ( ∇ · u )( t ) ◦ φ ( t ) det D Φ( t ) Sectional curvature of M in plane u 1 − u 2 � A ( u 1 , u 1 ) · A ( u 2 , u 2 ) − | A ( u 1 , u 2 ) | 2 dx R Φ ( u 1 , u 2 ) = where A ( u, u ) := ∇ p with p solving ∇· ( u ·∇ u + ∇ p ) = 0 ... geodesics diverge, effective unpredictability of Euler

  5. Brenier ’91: Projection onto M ... M = ( R d , dµ ) so that M := { Φ diffeomorphism | Φ# dµ = dµ } ⊂ L 2 µ ( R d , R d ). Given g ∈ L 2 µ ( R d , R d ) consider inf Φ ∈M � Φ − g � L 2 µ . Existence & uniqueness, solution is of the form g = ∇ ψ ◦ Φ ψ convex. with multi − d � 1 − d : amounts to monotone rearrangement nonlinear � linear : amounts to Helmholtz projection ... � “polar factorization”

  6. Brenier ’91: Connection to optimal transportation Set ρ := g # µ , then Φ ∈M � Φ − g � 2 inf L 2 µ � � � � � � Φ: R d → R d , Φ# µ = µ R d | g − Φ | 2 dµ � = inf � � � � R d | Ψ ( x ) − x | 2 µ ( dx ) � = inf � � Ψ: R d → R d , Ψ# µ = ρ Monge � � � � � R d × R d | x − y | 2 π ( dxdy ) � = inf � π has marginals µ, ρ � � � � � 2 | y | 2 − ϕ ( y ) ) ρ ( dy ) + 2 | x | 2 − ψ ( x ) ) µ ( dx ) ( 1 ( 1 � = sup � � ψ, ϕ : R d → R , ϕ ( y ) + ψ ( x ) ≥ x · y Kantorowicz = W 2 ( ρ, µ ) Wasserstein metric

  7. McCann ’97: displacement convexity M = R d . For densities ρ 1 and ρ 0 related via ρ 1 = Ψ# ρ 0 with Ψ = ∇ ψ , ψ convex , see Brenier consider curve ρ s := ( s Ψ + (1 − s ) id)# ρ 0 , s ∈ [0 , 1]. It is a metric geodesic in arc length wrt Wasserstein: W ( ρ 0 , ρ s ) = sW ( ρ 0 , ρ 1 ) and W ( ρ s , ρ 1 ) = (1 − s ) W ( ρ 0 , ρ 1 ) � Consider functional on densities ρ of form E ( ρ ) := R d U ( ρ ) dx . If U such that (0 , ∞ ) ∋ λ �→ λ d U ( λ − d ) convex & decreasing then E is convex along these geodesics 1 since A symmetric positive semi-definite �→ (det A ) is concave d

  8. Barenblatt ’52: nonlinear diffusions ∂ t ρ − △ ρ m = 0, Fix m > 0. Consider ρ ( t, x ) ≥ 0 solution of � ρdx = 1. wlog 1 ρ ∗ ( x Admits self-similar solution ρ ∗ ( t, x ) = t dα ˆ t α ) 1 with α := 2+( m − 1) d . ρ ∗ describes asymptotic behavior of any solution ρ : x ) t ↑∞ t dα ρ ( t, t α ˆ → ˆ ρ ∗ (ˆ x ) Friedman & Kamin ’80 based on Caffarelli & Friedman ’79

  9. Otto ’01: Formal Riemannian structure on space of probability measures � = { ρ : M → [0 , ∞ ) | M ρdx = 1 } with metric tensor P � � g ρ ( δρ 1 , δρ 2 ) = M ∇ ϕ 1 · ∇ ϕ 2 dρ where ϕ i solves elliptic equation −∇ · ρ ∇ ϕ i = δρ i Connection to Arnol’d for M = T d : The map Π: L 2 ( T d , R d ) → P , Φ �→ ρ = Φ# dx is Riemannian submersion, Π − 1 { dx } = M . Sectional curvature of P in plane ∇ ϕ 1 , ∇ ϕ 2 � T d | [ ∇ ϕ 1 , ∇ ϕ 2 ] − ∇ p | 2 dρ R ρ ( ∇ ϕ 1 , ∇ ϕ 2 ) = where p solves ∇ · ρ ([ ∇ ϕ 1 , ∇ ϕ 2 ] − ∇ p ) = 0 (O’Neill formula) . Note R ≥ 0 and ≡ 0 if and only if d = 1.

  10. Connections to Brenier and McCann � ρdx = 1 } endowed with = { ρ : M → [0 , ∞ ) | P � � g ρ ( δρ 1 , δρ 2 ) = M ∇ ϕ 1 · ∇ ϕ 2 dρ where ϕ i solves −∇ · ρ ∇ ϕ i = δρ i Connection to Brenier for M = R d : Wasserstein distance W = induced distance on P (Benamou-Brenier ’00) Connection to McCann for M = R d : displacement convexity = (geodesic) convexity

  11. Nonlinear diffusion = contraction in Wasserstein Connection to Barenblatt for M = R d : nonlinear diffusion ∂ t ρ − △ ρ m = 0 is gradient flow on P   m − 1 ρ m m � = 1 1 �   of E ( ρ ) = R d U ( ρ ) dx with U ( ρ ) :=   ρ ln ρ m = 1 (Jordan-Kinderlehrer-O.’97) λ �→ λ d U ( λ − d ) convex m ≥ 1 − 1 ⇐ ⇒ ⇐ ⇒ E convex on P d Hence if ρ i , i = 1 , 2, solve ∂ t ρ i − △ ρ m i = 0 then d dtW 2 ( ρ 1( t, · ) , ρ 2( t, · ) ) ≤ 0. � ρ ∗ ) ≤ t − 2 α R d | x | 2 dρ ( t = 0) In particular W ( t dα ρ ( t, t d · ) , ˆ

  12. Connections with Ricci curvature Theorem. M (compact) d -dim. Riemannian manifold with Ric ≥ 0. For m ≥ 1 − 1 ∂ t ρ i − △ ρ m d consider i = 0 , i = 1 , 2 . d dtW 2 ( ρ 1( t, · ) , ρ 2( t, · ) ) ≤ 1. Then O.’01 for M = R d , O.&Villani ’00 for general M , m = 1 (heuristics), ager’01 , Cordero&McCann&Schmuckenschl¨ Sturm&v.Renesse ’05 for general M , m = 1 (necessity), O.&Westdickenberg ’05

  13. Calculus from differential geometry Generalize to ∂ t ρ − △ π ( ρ ) = 0. Induced distance � energy of curves: Given one-parameter family { ρ ( s, · ) } s ∈ [0 , 1] of solutions ∂ t ρ ( s, · ) −△ π ( ρ ( s, · )) = 0. � 1 d Show 0 g ρ ( s, · ) ( ∂ s ρ ( s, · ) , ∂ s ρ ( s, · )) ds ≤ 0. dt Infinitesimal version: Suppose ∂ t ρ − △ π ( ρ ) = 0 and ∂ t δρ − △ ( π ′ ( ρ ) δρ ) = 0 . d Show dtg ρ ( δρ, δρ ) ≤ 0.

  14. Reduction to single formula Infinitesimal version: Suppose ∂ t ρ − △ π ( ρ ) = 0 and ∂ t δρ − △ ( π ′ ( ρ ) δρ ) = 0 . d Show dtg ρ ( δρ, δρ ) ≤ 0. ∂ t δρ − △ ( π ′ ( ρ ) δρ ) = 0 Explicit formula: For ∂ t ρ − △ π ( ρ ) = 0 , and δρ = −∇ · ( ρ ∇ ϕ ) have � 1 d 2 |∇ ϕ | 2 dρ dt � ( ρπ ′ ( ρ ) − π ( ρ )) ( △ ϕ ) 2 + π ( ρ ) ( | D 2 ϕ | 2 + ∇ ϕ · Ric ∇ ϕ ) dx = − Use ( △ ϕ ) 2 ≤ d | D 2 ϕ | 2 , need ρπ ′ ( ρ ) − π ( ρ ) ≥ 1 d π ( ρ ) ≥ 0

  15. An easy calculation � 1 d 2 |∇ ϕ | 2 dρ eliminate ∂ t ∇ ϕ dt � ϕ∂ t δρ − 1 2 |∇ ϕ | 2 ∂ t ρdx = eliminate ∂ t δρ, ∂ t ρ � π ′ ( ρ ) δρ △ ϕ − π ( ρ ) △ 1 2 |∇ ϕ | 2 dx = eliminate δρ � ρπ ′ ( ρ ) ( △ ϕ ) 2 + π ( ρ ) ( △ 1 2 |∇ ϕ | 2 − ∇ · ( △ ϕ ∇ ϕ )) dx = − 2 |∇ ϕ | 2 − ∇ · ( △ ϕ ∇ ϕ ) △ 1 Use Bochner’s formula = | D 2 ϕ | 2 + ∇ ϕ · Ric ∇ ϕ − ( △ ϕ ) 2 Reminiscent of Γ 2 -calculus of Bakry-Emery ’84

  16. Past – present Use Wasserstein contraction to give “synthetic” definition of Ric ≥ 0 on metric spaces M (Sturm, Lott-Villani, Ambrosio-Gigli-Savar´ e, ...) Connections with Ricci flow (McCann-Topping, ...) Regularity of Brenier map on smooth manifolds M (Caffarelli+, Trudinger+, Kim, Loeper, Figalli+, ...) Large deviation principle of underlying particle system selects the good gradient flow structure (Dawson&G¨ artner, Peletier, Mielke, ...)

Recommend


More recommend