image formation geometry
play

Image Formation: Geometry Thurs. Jan. 11, 2018 1 Origins of - PowerPoint PPT Presentation

COMP 546 Lecture 1 Image Formation: Geometry Thurs. Jan. 11, 2018 1 Origins of spatial vision (500 million years ago?) photoreceptor array (eye) brain legs Origins of spatial vision Origins of spatial vision Origins of spatial


  1. COMP 546 Lecture 1 Image Formation: Geometry Thurs. Jan. 11, 2018 1

  2. Origins of spatial vision (500 million years ago?) photoreceptor array (eye) β€œbrain” legs

  3. Origins of spatial vision

  4. Origins of spatial vision

  5. Origins of spatial vision Predator arrives, but no change in light level received by this cell. predator

  6. Origins of spatial vision Some change in light level predator received by this cell.

  7. Origins of spatial vision predator If right cell measures decrease in light, then move right.

  8. Evolution of eyes eye As pit becomes more concave, angular resolution improves (but amount of light decreases)

  9. poor large aperture angular resolution good angular resolution small aperture

  10. Radians q πœ„ π‘ π‘π‘’π‘—π‘π‘œπ‘‘ = π‘π‘ π‘‘π‘šπ‘“π‘œπ‘•π‘’β„Ž π‘π‘œ π‘‘π‘—π‘ π‘‘π‘šπ‘“ 𝑠𝑏𝑒𝑗𝑣𝑑 𝑝𝑔 π‘‘π‘—π‘ π‘‘π‘šπ‘“

  11. Radians vs. degrees q 180 𝑒𝑓𝑕𝑠𝑓𝑓𝑑 180 πœ„ π‘ π‘π‘’π‘—π‘π‘œπ‘‘ βˆ— = πœ„ * 𝑒𝑓𝑕𝑠𝑓𝑓𝑑 𝜌 π‘ π‘π‘’π‘—π‘π‘œπ‘‘ 𝜌 1 π‘ π‘π‘’π‘—π‘π‘œ β‰ˆ 57 𝑒𝑓𝑕

  12. Small angle approximation πœ„ 2 πœ„ β‰ˆ 2 π‘’π‘π‘œ πœ„ πœ„ 2 2 12

  13. Aperture angle from a few slides ago…. eye camera 13

  14. β€œF numberβ€œ (photography) camera q aperture A β€œfocal length” f 𝐺 π‘œπ‘£π‘›π‘π‘“π‘  ≑ 𝑔 1 𝐡 β‰ˆ q 14

  15. ASIDE: camera 5 mm aperture A β€œfocal length” f 50 mm 𝐺 π‘œπ‘£π‘›π‘π‘“π‘  ≑ 𝑔 𝐡 = 50 5 = 10 15

  16. eye (ignore lens) 5 mm aperture A length f 25 mm 𝐺 π‘œπ‘£π‘›π‘π‘“π‘  ≑ 𝑔 𝐡 = 25 5 = 5 16

  17. Visual Angle 𝛽 𝛽 β‰ˆ π‘π‘π‘˜π‘“π‘‘π‘’ β„Žπ‘“π‘—π‘•β„Žπ‘’ π‘’π‘—π‘‘π‘’π‘π‘œπ‘‘π‘“ 17

  18. Visual Angle 𝛽 𝛽 β‰ˆ 𝑗𝑛𝑏𝑕𝑓 𝑑𝑗𝑨𝑓 𝑝𝑔 π‘π‘π‘˜π‘“π‘‘π‘’ 𝑒𝑗𝑏𝑛𝑓𝑒𝑓𝑠 𝑝𝑔 π‘“π‘§π‘“π‘π‘π‘šπ‘š 18

  19. Two different concepts Aperture angle Visual angle 19

  20. Visual Angle Example 1 57 𝑑𝑛 (arm β€² s length) Finger nail 𝛽 1 𝑑𝑛 𝑛 π‘π‘π‘˜π‘“π‘‘π‘’ β„Žπ‘“π‘—π‘•β„Žπ‘’ 1 𝑑𝑛 𝛽 β‰ˆ = = 1 degree 180 π‘’π‘—π‘‘π‘’π‘π‘œπ‘‘π‘“ 20 𝑑𝑛 𝜌

  21. Visual Angle Example 2 18 𝑛 𝛽 31.4 𝑑𝑛 𝜌 10 𝑛 π‘π‘π‘˜π‘“π‘‘π‘’ β„Žπ‘“π‘—π‘•β„Žπ‘’ 𝜌 𝛽 β‰ˆ = 18 𝑛 = 180 π‘ π‘π‘’π‘—π‘π‘œπ‘‘ = 1 degree π‘’π‘—π‘‘π‘’π‘π‘œπ‘‘π‘“ 21

  22. Example 3: moon 1 Visual angle of moon is about 2 𝑒𝑓𝑕. 22

  23. Units of visual angle 180 1 radian = deg 𝜌 1 deg = 60 minutes (or β€œ arcmin ”) 1 minute = 60 seconds (or β€œ arcsec ”) 23

  24. Image position (X, Y, Z ) (x, y) pinhole camera mode 24

  25. Pinhole camera 𝑍 (X, Y, Z ) π‘Œ (0, 0) π‘Ž (x, y) image plane behind pinhole 25

  26. View from side (YZ) 𝑍 ( Y, Z ) π‘Ž y pinhole position (0, 0, 0 ) 𝑧 𝑧 𝑔 = 𝑍 image π‘Ž plane Z = - f 26

  27. View from above (XZ) π‘Œ π‘Ž x pinhole (X, Z ) position (0, 0, 0 ) 𝑦 𝑔 = π‘Œ 𝑦 image π‘Ž plane Z = - f 27

  28. Image position in radians* 𝑍 (X, Y, Z ) π‘Œ (0, 0) π‘Ž 𝑦, 𝑧 𝑔 , 𝑧 𝑦 π‘Œ π‘Ž , 𝑍 image = 𝑔 π‘Ž plane Z=-f behind pinhole *assuming small angle approximation 28

  29. Visual direction in radians* 𝑍 (X, Y, Z ) π‘Œ 𝑦, 𝑧 (0, 0) image π‘Ž (0, 0) plane in 𝑦, 𝑧 front of pinhole 𝑦 𝑔 , 𝑧 π‘Œ π‘Ž , 𝑍 = 𝑔 π‘Ž

  30. Example (ground and horizon) 30

  31. Image projection (upside down and backwards) 31

  32. Image projection Visual direction (image plane (image plane in behind pinhole) front of pinhole) 𝑧 𝑦 𝑦 𝑧 32

  33. Depth Map 𝑍 ( X, Y, Z ) π‘Œ 𝑦, 𝑧 π‘Ž (0, 0) The mapping π‘Ž 𝑦, 𝑧 from image positions 𝑦, 𝑧 to depth π‘Ž values on a 3D surface is called a β€œdepth map”. 33

  34. What is the depth map of a ground plane ? 𝑍 π‘Ž y ( - β„Ž , Z ) Ground plane 𝑍 = βˆ’ β„Ž 34

  35. What is the depth map of a ground plane ? 𝑍 π‘Ž y ( - β„Ž , Z ) 𝑍 = βˆ’ β„Ž Ground plane 𝑧 𝑔 = 𝑍 π‘Ž = βˆ’β„Žπ‘” Thus, π‘Ž 𝑧 35

  36. Visual direction (image plane in front of pinhole) 𝑧 𝑦 π‘Ž = βˆ’β„Ž 𝑔 𝑧 36

  37. Binocular Vision Assume eyes are separated by π‘ˆ π‘Œ in the X direction. π‘ˆ π‘Œ is the interocular distance . 𝑍 ( π‘ˆ 𝑦 , 0, f ) π‘Œ 𝑠 𝑍 π‘Ž right eye π‘Œ π‘š ( 0, 0, f ) π‘ˆ 𝑦 π‘Ž left eye 37

  38. What is the difference in or visual direction (or image position) of each 3D object in the left and right images? How does this difference depend on depth ? 38

  39. View from above (XZ) π‘Œ 𝑠 π‘Ž (𝑦 𝑠 , 𝑔) ( π‘Œ 0 , π‘Ž 0 ) π‘Œ π‘š π‘ˆ 𝑦 (𝑦 π‘š , 𝑔 ) π‘Ž 39

  40. 𝑦 π‘š 𝑦 𝑠 Binocular disparity ≑ 𝑔 βˆ’ 𝑔 is the difference in visual direction of a 3D point as seen by two eye. 40

  41. 𝑦 π‘š 𝑦 𝑠 Binocular disparity ≑ 𝑔 βˆ’ 𝑔 𝑦 π‘š 𝑔 = π‘Œ 0 π‘Ž 0 𝑦 𝑠 𝑔 = π‘Œ 0 βˆ’ π‘ˆ 𝑦 π‘Ž 0 π‘ˆ 𝑦 Thus, binocular disparity = π‘Ž 0 41

  42. Superimposing left and right eye images 𝑧 cloud Zero disparity 𝑦 π‘ˆ π‘ˆ 𝑧 𝑦 𝑦 binocular disparity = π‘Ž 0 = βˆ’β„Ž 𝑔 42

  43. Vergence (rotating the eyes) π‘Œ 𝑠 π‘Ž Here we assume π‘Œ π‘š horizontal rotation only (β€œpan”). π‘Ž 43

  44. Vergence 𝑧 𝑧 Negative cloud cloud disparity 𝑦 𝑦 Zero disparity Example: verge on far person Positive disparity Positive disparity 44

  45. Let πœ„ π‘š and πœ„ 𝑠 be the rotations of the left and right eyes due to vergence. The rotations can be approximated by a shift in image position. 𝑦 π‘š 𝑦 𝑠 Binocular disparity ≑ ( 𝑔 βˆ’ πœ„ π‘š ) βˆ’ ( 𝑔 βˆ’πœ„ 𝑠 ) 𝑦 π‘š 𝑦 𝑠 = 𝑔 βˆ’ βˆ’ (πœ„ π‘š βˆ’ πœ„ 𝑠 ) 𝑔 45

Recommend


More recommend