high throughput molecular dynamics simulation and markov
play

High-throughput molecular dynamics simulation and Markov modeling - PowerPoint PPT Presentation

High-throughput molecular dynamics simulation and Markov modeling Frank No (FU Berlin) frank.noe@fu-berlin.de Molecular dynamics Molecular dynamics are stochastic Single trajectories are usually not representative


  1. High-throughput molecular dynamics simulation and Markov modeling Frank Noé (FU Berlin) frank.noe@fu-berlin.de

  2. Molecular dynamics • Molecular dynamics are stochastic 
 • Single trajectories are usually not representative 
 • Objective is to sample expectation values

  3. Conformation Dynamics / Markov models Reconciliation with Sampling Problem Analysis Problem Experiment ms - s huge, complex datasets hugedata sets ns - µ s

  4. 50 K atom system (explicit solvent) 100 ns / day / GPU* Rate 10 µs / day / Anton I e.g. Amber, AceMD, OpenMM

  5. 50 K atom system (explicit solvent) 100 ns / day / GPU* Rate 10 µs / day / Anton I e.g. Amber, AceMD, OpenMM 100 GPUs 1 Anton I 1 traj. of 10 µs / day 100 traj. of 100 ns / day Throughput 10 µs / day 10 µs / day

  6. 50 K atom system (explicit solvent) 100 ns / day / GPU* Rate 10 µs / day / Anton I e.g. Amber, AceMD, OpenMM 100 GPUs 1 Anton I 1 traj. of 10 µs / day 100 traj. of 100 ns / day Throughput 10 µs / day 10 µs / day 10.000.000 USD Cost 100.000 USD

  7. Example for ligand binding: Trypsin – Benzamidine System Size: 50 K atoms (100 ns/day/GTX780) Simulation lengths: 100 ns to 2 µ s Total sampling data: 200 µ s pyemma.org

  8. Good situation: diffuse landscape with intermediate steps energy rare event unbound not-so rare events bound conformation

  9. Markov State Models Early contributions Review book Schütte et al, J. Comput. Phys. 1999 de Groot et al, J. Mol. Biol. 2001 Swope, Pitera and Suits, JPCB 2004 Sriraman, Kevrikidis and Hummer, JPCB 2005 Schultheis et al, JCTC 2005 Singhal, Pande, JCP 2005 Chodera et al, JCP 2007 Noé et al, JCP 2007 Construction and Analysis Dimension reduction Perez-Hernandez et al, JCP 2013 Estimation and Validation Prinz et al, JCP 2011 Computing kinetic experimental observables Noé et al, PNAS 2011 Computing transition pathways Noé et al, PNAS 2009

  10. PyEMMA: Software for construction of Markov state models www.pyemma.org

  11. Trypsin apo conformation dynamics pyemma.org Plattner and Noé, Nature Comm. 6, 7653 (2015)

  12. Trypsin bound-state conformation dynamics t unbind = 91 ±40 µs t unbind = 0.03 ±0.001 µs G = 3.6 ±0.6 kcal/mol G = 7.8 ±0.6 kcal/mol 1* 1* T unbind = 3.5 ±2 µs 1 G = 4.9 ±0.7 kcal/mol 1* t unbind = 1.1 ±2 µs G = 6.5 ±0.8 kcal/mol t unbind = 394 ±141 µs 1 G = 2.0 ±0.8 kcal/mol 1 or 1* p ij > 0.01 T unbind = 5.3 ±4 µs p ij > 0.001 G = 4.3 ±0.7 kcal/mol p ij > 0.0001 t unbind = 63 ±6 µs p ij < 0.0001 G = 0.03 ±0.2 kcal/mol 1* pyemma.org Plattner and Noé, Nature Comm. 6, 7653 (2015)

  13. Overall binding / conformational kinetics pyemma.org Plattner and Noé, Nature Comm. 6, 7653 (2015)

  14. Trypsin excited conformations found as ground-state conformations of other serine proteases pyemma.org Plattner and Noé, Nature Comm. 6, 7653 (2015)

  15. MSM: examples Substrate binding to HIV protease Protein folding mechanisms 0.52 2.57 0.52 0.52 5.35 7.4 5.35 Sadiq, Noé, De Fabritiis, PNAS (2012) Relaxed state Noé et al, PNAS (2009) Scission +GTP Protein complexes Faelber, … ,Sadiq, Noé, Daumke Nature (2011) Constricted state Reubold et al, Nature (2015)

  16. Current examples (in prep) Barnase-barstar (120K atoms) Protein-protein association 2 ms Rhodopsin (60 K atoms) Activation transition 1.5 ms

  17. ”High performance” computing Parallel nodes time

  18. ”High performance” computing Parallel nodes time

  19. Ensemble MD client pilot jobs Parallel nodes time

  20. Automatic / adaptive sampling machines copernicus-computing.org htmd.org https://radicalensemblemd.readthedocs.org

  21. Transition-based reweighting analysis method (TRAM)

  22. Example: binding and folding of PMI to MDM2 fast (microseconds) slow (10-100 milliseconds) nanomolar binder

  23. Bad situation: single high barriers (e.g. salt bridge) energy rare event not-so unbound rare events bound conformation

  24. Bad situation: single high barriers (e.g. salt bridge) energy biased or generalized ensemble simulation (e.g. Replica-exchange, Metadynamics,...) direct MD unbound bound conformation direct molecular dynamics biased or generalized joint optimal estimate? ensemble simulation Wu, Mey, Rosta, Noé, JCP 141, 214106 (2014)

  25. Example for an enhanced sampling method: Umbrella sampling v(x) . . . + b i (x) Wu, Mey, Rosta, Noé, JCP 141, 214106 (2014)

  26. Reweighting of equilibrium probabilities Reweighted probabilities: normalization reweighting equilibrium constant factor probabilites Wu, Mey, Rosta, Noé, JCP 141, 214106 (2014)

  27. Transition-based Reweighting Analysis Method (dTRAM) Reweighted probabilities: Estimation problem Constraints Wu, Mey, Rosta, Noé, JCP 141, 214106 (2014) pyemma.org

  28. Example: binding and folding of PMI to MDM2 System Size: 50 K atoms (100 ns/day/GTX780) Trajectories: 500 x 1000 ns Total sampling data: 500 µ s

  29. Acknowledgements Funding Positions available frank.noe@fu-berlin.de Collaborations Funding Christof Schütte (FU Berlin) Vijay Pande (Stanford) Eric Vanden-Eijnden (Courant Institut NY) Katja, Faelber, Oliver Daumke (MDC) Thomas Weikl (MPI Potsdam) John Chodera (MSKCC NY) Marcus Sauer, Sören Doose (Uni Würzburg) Gianni de Fabritiis (Barcelona)

Recommend


More recommend