the foundations of personalized medicine
play

The Foundations of Personalized Medicine Jeremy M. Berg - PowerPoint PPT Presentation

The Foundations of Personalized Medicine Jeremy M. Berg Pittsburgh Foundation Professor and Director, Institute for Personalized Medicine University of Pittsburgh Personalized Medicine Physicians have treated patients based on their


  1. The Foundations of Personalized Medicine Jeremy M. Berg Pittsburgh Foundation Professor and Director, Institute for Personalized Medicine University of Pittsburgh

  2. “Personalized Medicine” • Physicians have treated patients based on their individual characteristics since before Hippocrates • Modern technologies (genomic and other) enable characterization of individuals at unprecedented levels of resolution • The goal of “Personalized Medicine” is to harvest these data to aid in disease prevention and treatment with benefit both to patients and society

  3. Personalized Medicine • Different Subfields – Complex Diseases – Cancer – Perinatal Diagnosis – Pharmacogenomics • Common Themes – DNA sequencing and other technologies – Complexity but links to existing knowledge – “Big Data”

  4. 1990-2003: The Human Genome Project Over 3 Billion Unique Base Pairs Distributed Across 23 Pairs of Chromosomes Sequence “finished” in 2003 though international effort (under budget and ahead of schedule with some competition from a private company)

  5. “The” Human Genome Sequence Chromosome 1 TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC CCTAACCCAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCTAACCCTAACCCTAACCCTAA CCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAAACCCTAAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCAACCCCAAC CCCAACCCCAACCCCAACCCCAACCCTAACCCCTAACCCTAACCCTAACCCTACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCC TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTCGCGGTACCCTCAGCCGGCCCGCCCGCCCGGG TCTGACCTGAGGAGAACTGTGCTCCGCCTTCAGAGTACCACCGAAATCTGTGCAGAGGACAACGCAGCTCCGCCCTCGCGGTGCTCTCCGGGTCTGTGCT GAGGAGAACGCAACTCCGCCGTTGCAAAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCG GCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGA CACATGCTAGCGCGTCGGGGTGGAGGCGTGGCGCAGGCGCAGAGAGGCGCGCCGCGCCGGCGCAGGCGCAGAGACACATGCTACCGCGTCCAGGGGTGGA GGCGTGGCGCAGGCGCAGAGAGGCGCACCGCGCCGGCGCAGGCGCAGAGACACATGCTAGCGCGTCCAGGGGTGGAGGCGTGGCGCAGGCGCAGAGACGC AAGCCTACGGGCGGGGGTTGGGGGGGCGTGTGTTGCAGGAGCAAAGTCGCACGGCGCCGGGCTGGGGCGGGGGGAGGGTGGCGCCGTGCACGCGCAGAAA CTCACGTCACGGTGGCGCGGCGCAGAGACGGGTAGAACCTCAGTAATCCGAAAAGCCGGGATCGACCGCCCCTTGCTTGCAGCCGGGCACTACAGGACCC GCTTGCTCACGGTGCTGTGCCAGGGCGCCCCCTGCTGGCGACTAGGGCAACTGCAGGGCTCTCTTGCTTAGAGTGGTGGCCAGCGCCCCCTGCTGGCGCC GGGGCACTGCAGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGGCAGCTAGGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCA GCACGCCCACCTGCTGGCAGCTGGGGACACTGCCGGGCCCTCTTGCTCCAACAGTACTGGCGGATTATAGGGAAACACCCGGAGCATATGCTGTTTGGTC TCAGTAGACTCCTAAATATGGGATTCCTGGGTTTAAAAGTAAAAAATAAATATGTTTAATTTGTGAACTGATTACCATCAGAATTGTACTGTTCTGTATC CCACCAGCAATGTCTAGGAATGCCTGTTTCTCCACAAAGTGTTTACTTTTGGATTTTTGCCAGTCTAACAGGTAAGGCCCTGGAGATTCTTATTAGTGAT TTGGGCTGGGGCCTGGCCATGTGTATTTTTTTAAATTTCCACTGATGATTTTGCTGCATGGCCGGTGTTGAGAATGACTGCGCAAATTTGCCGGATTTCC TTTGCTGTTCCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTCTTTGACCTC TTCTTTCTGTTCATGTGTATTTGCTGTCTCTTAGCCCAGACTTCCCGTGTCCTTTCCACCGGGCCTTTGAGAGGTCACAGGGTCTTGATGCTGTGGTCTT CATCTGCAGGTGTCTGACTTCCAGCAACTGCTGGCCTGTGCCAGGGTGCAAGCTGAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAG TGGGATGGGCCATTGTTCATCTTCTGGCCCCTGTTGTCTGCATGTAACTTAATACCACAACCAGGCATAGGGGAAAGATTGGAGGAAAGATGAGTGAGAG CATCAACTTCTCTCACAACCTAGGCCAGTAAGTAGTGCTTGTGCTCATCT...

  6. “The” Human Genome Sequence Skip next 12.4 Million Slides

  7. “The” Human Genome Sequence Y Chromosome ...CCCAGCTGCCAGCAGGCGGGCGTGCTGCCAGTACACCTTGAGCAAGAGGACCCTGCAATGTCCGTAGCTGCCAGCAGGCGGCGTGCCACCACTATAC AGTAAGCAAGAGGACCCTGCAGTGCCCCGGCGCCACGAGGGGGCGGTGGCCACCACTCTAAGCAAGAGAGCCCTGCAGTTGCCCTAGTCGCCAGCAGGGG GCGCCCTGGCACAGCACCGTGAGCAAGCGGGTCCTGTAGTGCCCGGCTGCAAGCAAGGGGCGGTCGATCCCGGCTTTTCGGATTACTGAAGTTCCACCCG TCTCTGCGCCGCGCCGCCGTGACGTGAGTTTCTGCGCGTGCACGGCGCCCCCGCACCCCCCCGCCCCCAGCCCGGCGCCGTGCGACTTTGCTCCTGCAAC ACACGCACCCCCAACCCCCGCCCGTAGGCGTGCGTCTCTGCGCCTGCGCCACGCCTCCACCCCTGGACGCGCTAGCATGTGTCTCTGCGCCTGCGCCGGC GCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTCT CTGCGCCTGCGCCGGCGCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTCTCTGCGCCTGCGCC GGCGCGGCGCGCCTCTCTGCGCCTGCGCCGGCGCGGCGCGCCTTTGCGACGGCCGAGTTGCGTTCTCGTCAGCACAGAGCGGCAGAGCACCGCGAGGGCG GAGCTGCGTTGTCCTCTGCACAGATTTCGGTGGTACTGCGAAGGCGGAGCAGAGTTCTCCTCAGGTCAGACCCGGGCGGGCGGGCTGAGGGTACCGCGAG GGCGGAGCTGCGTTCTGCTCAGTACAGACCTGGGGGTCACCGTAAAGGTGGAGCAGCATTCCCCTAAGCACAGACGTTGGGGCCACTGACTGGCTTTGGG ACAACTCGGGGCGCATCAACGGTGAATAAAAATGTTTCCCGGTTGCAGCCATGAATAATCAAGGTGAGAGACCAGTTAGAGCGGTTCAGTGCGGAAAACG GGAAAGCAAAAGCCCCTCTGAATGCTGCGCACCGAGATTCTCCCAAGGCAAGGGGAGGGGCTGCATTGCAGGGTCCACTTGCAGCGTCGGAACGCAAATG CAGCATTCCTAATGCACACATGATACCCAAAATATAACACCCACATTCCTCATGTGCTTAGGGTGAGGGTGAGGGTTGGGGTTGGGGTTGCGGTTGGGGT TGGGGTTGGGGTTGGGGTTGGGGTTAGGGTTTGGGTTTAGGGTTGGGGTAGGGGTAGGGGTGGGGTTGGGGTTGGGGTTGGGGTTGGGGTTAGGGGTTGG GGTTGGGGTTGGGGTTGGGGTTGGGGTTAGGGTTAAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGTTGGGGTTGGGGTTAGGGTTAGGGTAGGGTTAGGG TTAGGGTTAGGGGTTAGGGGTTAGGGTAGGGTTAGGGTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTA GGGGTTAGGGGTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGTTAGGGTTAGGGGTTAGGGTTAGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAG GGTAGGGTAGGGTAGGGTAGGGAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTGAGGGTTAGGGTTAG GGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT AGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGGTTAGGGTTAGGGTTAGGGTTAGGGTGTGGTGTGTGGGTGTGTGTGGGTGTGGTG TGTGTGGGTGTGGTGTGTGGGTGTGGGTGTGGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT

  8. DNA Sequencing Technology

  9. Human DNA Sequence Variation • Unrelated individuals are (on average) ~99.5% identical in DNA sequence – Single base variations (single nucleotide polymorphisms, SNPs) – Variable numbers of copies of repeated sequences (copy number variations, CNVs)

  10. Human DNA Sequence Variation • 99.5% Identical means 0.5% different • 0.5% X 3 billion base pairs = 15 million differences – Not all differences are independent – Not all differences are meaningful

  11. Blocks of Linkage Disequilibrium

  12. Complex Traits • Influenced by both genes (usually many) and environment • Heritability can be inferred from studies of twins (identical and fraternal)

  13. Genome-Wide Association Studies • Identify a trait for which information is available from a moderate to large population of diverse individuals • Test genetic markers from across the human genome to look for specific markers that vary between individuals with the same pattern as the trait • Identify genes that are adjacent to the genetic markers as candidates for contributing to the variation in the trait

  14. Genome-Wide Association Studies What are the odds of these patterns occurring by chance?

  15. Genome-Wide Association Studies 1:23 1:16 1:10 1:500,000 1:10 1:10

  16. The Genomics of Eye Color

  17. Pancreatitis as a Model for Personalized Medicine Applied to Complex Diseases • Inflammation of the pancreas – Acute pancreatitis (30/100,000/year) – Recurrent acute pancreatitis – Chronic pancreatitis (8/100,000/year) • Risk Factors – Heavy alcohol use – Smoking – Gall stones – Genetic factors David Whitcomb, MD, PhD

  18. Acute vs Chronic Pancreatitis David Whitcomb, MD, PhD

  19. Hereditary Pancreatitis • Some families show very high risk of pancreatitis • Autosomal dominant inheritance • Variations mapped to chromosome 7q35 • Mutations discovered in PRSS1 gene encoding cationic trypsinogen

  20. Trypsinogen Activation • Inactive precursor (zymogen) of digestive protease trypsin • Trypsin cleaves after basic (lysine, arginine) residues • Trypsinogen activated by cleavage of Lys6-Ile7 bond by enteropeptidase • Can be autoactivated by trypsin

  21. Trypsin Autolysis • Trypsin can be inactivated by proteolysis by trypsin and chymotrypsin

  22. Variations Associated with Hereditary Pancreatitis • Different families have different variations e.g. – R122H – N29I – A16V – D19A – D22G – K23R – E79K • Gain of function (increased auto-activation, resistance to autolysis)

  23. Other Genetic Contributors to Ideopathic Pancreatitis • SPINK1 (Serine Protease Inhibitor, Kazal Type 1) – Inhibition of activated trypsin • CTRC (Chymotrypsin C) – Cleavage of activated trypsin • CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) – Contributor to secretion leading to flushing of pancreatic ducts

  24. GWAS Studies • Studies of ideopathic pancreatitis > Rare genetic variations that contribute to pancreatitis risk • Gene-wide association studies should reveal common variations that may contribute • 2 stage GWAS study (676 cases, 4507 controls; 910 cases, 4170 controls)

  25. GWAS Studies • Two loci identified on chromosomes 7q34 and Xq22.3 • The locus on chromosome 7 appears to be in the PRSS1-PRSS2 gene cluster • The locus on the X chromosome appears to be in the CLDN2 gene encoding claudin-2, a membrane protein found in tight junctions

  26. GWAS Studies • The variant in the PRSS1-PRSS2 cluster does not, in general, affect the amino acid sequence of trypsinogen • Rather, the variant is in the promoter region and appears to be associated with higher levels of gene expression

Recommend


More recommend