h 2 s adsorption from biogas with thermal treatment
play

H 2 S adsorption from biogas with thermal treatment residues - PowerPoint PPT Presentation

7 th International Conference on Sustainable Solid Waste Management Friday June 28 th 2019 H 2 S adsorption from biogas with thermal treatment residues Valentine Gasquet 1 , Boram Kim 1, La Sigot 2 & Hassen Benbelkacem 1 1 DEEP- INSA Lyon 2


  1. 7 th International Conference on Sustainable Solid Waste Management Friday June 28 th 2019 H 2 S adsorption from biogas with thermal treatment residues Valentine Gasquet 1 , Boram Kim 1, Léa Sigot 2 & Hassen Benbelkacem 1 1 DEEP- INSA Lyon 2 LRGP, CNRS, Université de Lorraine, 1

  2. A renewable, local and uninterrupted energy BIOGAS, WHAT IS IT? 2 Source : Department of Environmental & Conservation

  3. BIOGAS, WHAT IS IT?  Water H 2 S  H 2 S  Siloxanes Air Pollutants Air Pollutants  Etc CO2 CO2 CH4 CH4 3

  4. H 2 S ISSUE H 2 S Between 100 and 10 000 ppm Flammable Toxic Dangerous for the environnent 4

  5. BIOGAS PURIFICATION For all biogas types: H 2 S issue Current solutions : • Adsorption on activated carbon or ferric oxide • Scrubbing tower • Biofilters 5

  6. EXAMPLE Impregnated activated carbon Alternative adsorbant Cleaned biogas ?? € / yr Raw biogas 75 k€/yr 600 Nm 3 /h [H 2 S]=1000 ppm Removal capacity : 50 % 6

  7. ALTERNATIVE ADSORBANTS 10 9 8 • Municipal solid waste incineration 7 bottom ash Number of articles 6 5 • Biomass ash 4 • Biochars 3 • Pyrolyzed sewage sludge 2 1 • Industrial waste 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Year  Thermal treatment residues Number of articles concerning H 2 S adsorption with alternative materials 7

  8. ALTERNATIVE ADSORBANTS Objectives : Objectives : Biogas type: Real or synthetic,  Compare adsorbents performances  Compare adsorbents performances composition for H 2 S removal in the same for H 2 S removal in the same Difficult to compare experimental conditions experimental conditions  Link adsorption capacity and  Link adsorption capacity and Process materials characterization materials characterization parameters: Reactor size, experiment length, flow 8

  9. SELECTED MATERIALS Biomass ash Municipal solid waste incineration bottom ash Source : CCI Lozère – Mission bois-énergie Source : Annual Report Household Waste Service - – Grand Angoulême 9

  10. SELECTED MATERIALS Biochar Incinerated sewage sludge Source : Green Charcoal Internationam Source : Leaflet Pyrofluid - VEOLIA 10

  11. EXPERIMENTAL SET-UP  Raw biogas  Reactor volume = 250 cm 3  Flow : 1L/min  Length ≈ 2 weeks  Residence time = 14 s 11

  12. EXPERIMENTAL SET-UP Adsorption reactors Flowmeter Humidification vial 12

  13. MATERIAL CHARACTERISATION For raw and used materials : Systematical characterisation of materials Physical Chemical characterisation characterisation Elementary Porosity composition Water content pH 13

  14. ELEMENTARY COMPOSITION BA Loss- MSWI BA on- ignitio Loss- n on- Other ignitio minera SiO2 Other n minerals SiO2 ls P2O5 CaO P2O5 Al2O3 Al2O3 Fe2O3 CaO Fe2O3 BCH ISS Loss- on- SiO2; 0,3; Al2O3; 0,1; Fe2O3; 0,0; P2O5; 0,1; Other CaO 0,32% 0,06% 0,03% 0,12% minerals Other ignitio minera n Loss- SiO2 ls Al2O3 on- P2O5 Fe2O3 ignitio CaO n 14

  15. ELEMENTARY COMPOSITION BA Loss- MSWI BA on- ignitio Loss- n on- Other ignitio minera SiO2 Other n minerals SiO2 ls P2O5 CaO P2O5 Al2O3 Al2O3 Fe2O3 CaO Fe2O3 BCH ISS Loss- on- SiO2; 0,3; Al2O3; 0,1; Fe2O3; 0,0; P2O5; 0,1; Other CaO 0,32% 0,06% 0,03% 0,12% minerals Other ignitio minera n Loss- SiO2 ls Al2O3 on- P2O5 Fe2O3 ignitio CaO n 15

  16. pH AND WATER CONTENT 14 40% 12 30% 10 Water content 8 20% H p 6 (%) 4 10% 2 0 0% BA MSWI BA BCH ISS 16

  17. POROSITY Surface area Surface area Surface area Mesopore Mesopore Mesopore Micropore Micropore Micropore Bulk specific Bulk specific Bulk specific (m²/g) (m²/g) (m²/g) volume (cm 3 /g) volume (cm 3 /g) volume (cm 3 /g) volume (cm 3 /g) volume (cm 3 /g) volume (cm 3 /g) gravity gravity gravity Biomass ash Biomass ash Biomass ash 32 32 32 0.090 0.090 0.026 0.026 0.7 MSWI bottom ash MSWI bottom ash MSWI bottom ash 17 17 17 - - - - 2.3 Biochar Biochar Biochar 919 919 919 0.196 0.196 0.315 0.315 0.1 Incinerated sewage Incinerated sewage Incinerated sewage 3 3 3 0.021 0.021 0.000 0.000 0.8 sludge sludge sludge 17

  18. ADSORPTION TESTS Evolution of the retention rate 100 90 80 Biomass ash 70 Retention rate (%) Biochar 60 Incinerated sewage 50 sludge 40 MSWI bottom ash 30 20 10 0 0 1 2 3 4 5 6 7 8 9 10 Time (days) 18

  19. ALCALINITY pH variation before and after adsorption 14 12 10 8 6 4 2 0 BA MSWI BA BCH ISS Raw material Used material 19

  20. POROSITY Surface Mesopore volume Mesopore volume Micropore volume Micropore volume Surface area (m²/g) area (m²/g) (cm 3 /g) (cm 3 /g) (cm 3 /g) (cm 3 /g) Raw Raw Used Used Raw Raw Used Used Raw Raw Used Used material material material material material material material material material material material material Biomass ash Biomass ash 32 32 9 9 0.090 0.045 0.026 0.000 MSWI bottom MSWI bottom 17 17 9 9 - - - - ash ash Biochar Biochar 919 919 66 66 0.196 0.095 0.315 0.007 Incinerated Incinerated = = 3 3 2 2 0.021 0.021 0.000 0.000 sewage sludge sewage sludge Micropores filling 20

  21. CONCLUSION Porous material but no mineral oxides MSWI Raw biogas bottom ash Biochar Clean biogas Basic materials, humid and Contain mineral containing oxides but n on mineral oxides porous material and some porosity Biomass ash Incinerated sewage sludge 21

  22. ON GOING STUDY - ADSORPTION MECHANISMS Physisorption Influence of porosity H 2 S oxidation Chemisorption Modified from Hervy et al. (2018)

  23. OUTLOOK  Improve adsorbent’s capacities with  Understand adsorption mechansims formulation and granulation with further analysis of materials : Infra-red and Raman spectroscopy, thermogravimetric analysis … 23

  24. Thank you for your attention

Recommend


More recommend