temperature physical
play

TEMPERATURE PHYSICAL ADSORPTION Ji tefanica, Luk Pila 4.11.2015 - PowerPoint PPT Presentation

JV e, a. s. POST COMBUSTION CO 2 CAPTURE BY LOW TEMPERATURE PHYSICAL ADSORPTION Ji tefanica, Luk Pila 4.11.2015 Overview Adsorption positives Adsorption challenges Pilot plant Experiment results Integration to power


  1. ÚJV Řež, a. s. POST – COMBUSTION CO 2 CAPTURE BY LOW TEMPERATURE PHYSICAL ADSORPTION Jiří Štefanica, Lukáš Pilař 4.11.2015

  2. Overview Adsorption positives Adsorption challenges Pilot plant Experiment results Integration to power plant 1

  3. Adsorption positives Working medium is in solid state – easier manipulation Lower desorption energy Does not require water Non-corrosive working medium 2

  4. Adsorption challenges Sorbent interaction with flue gas components Water NO X , SO 2 PM Loss of sorbent capacity Suitable adsorption material Expectations impregnated sorbents with high capacity for CO 2 (15 %) – not successful Reality activated carbon AP4-50 maximum capacity for CO 2 2,5 % To reach 75 % CO 2 capture efficiency the capacity for CO 2 will drop to1,5 % (respectively 85 % CO 2 capture with the capacity of 0,5 %) 3

  5. Pilot plant Rotary adsorber – for testing purposes consists of 6 separate collumns Parameters Adsorption temperature: 60 ° C Desorption temperature: 300 ° C (220 ° C) Pressure: atmospheric Flow in adsorption part: 90 m 3 /h Adsorber diameter: 0,8 m (column 0,2 m) Adsorber height: 0,23 m Flow in desorption: 10 m 3 /h Desorption medium: Air (CO 2 ) Rotation: 1 step in 2 – 4 min 4

  6. Pilot plant - diagram 5

  7. Pilot plant 6

  8. Pilot plant 7

  9. Experimental results Tests with „model flue gas“ 10 – 14 % CO 2 in air Tests with real flue gas on the premises of Prunéřov power plant (250 MW, lignite coal, net efficiency 38,4 %) CO 2 : 5 – 8 % vol. NO x : 1 – 10 ppm SO 2 : 10 – 300 ppm CO: 1 – 10 ppm O 2 : 10 – 20 % vol. rel. humidity: up to 98 % 8

  10. Experimental results 9

  11. Experimental results 10

  12. Integration to power plant Input parameters Fuel – lignite – mine Libouš LHV 8,5 MJ/kg Water 31 % weight A d 41 % weight S d 3 % weight Flue gas mg/Nm 3 207,5 Flue gas volume - dry Nm 3 /h 766 045 NO x PM mg/Nm 3 10,4 CO 2 % obj 13,94 Nm 3 /h 218 493 O 2 % obj 5,44 Vapor Water(drifting drops) kg/h 80 N 2 % obj 80,62 mg/Nm 3 155,6 SO 2 ° C mg/Nm 3 12,44 Temperature 62 SO 3 11

  13. Integration to power plant Input parameters  Parameters of reference power unit:  Admission steam: ta= 575 ° C, p = 18,3 MPa  Reheated steam: tp = 580 ° C, p = 3.6 MPa  Feedwater temperature 251 ° C  Gross power output 250 MWe  Net efficiency 38.4%  Utilization 6 300 h/year Gross power output MWe 250 Fuel consumption t/h 214 Heat in fuel MWt 588 Electricity self-consumption MWe 24 Production CO 2 t/h 211 CO 2 to atmospher t/h 211 Net electrical output MWe 226 Net efficiency % 38.4 12

  14. Integration to power plant Scheme 13

  15. Integration to power plant Electricity consumption Equipment Unit Number ID fan (flue gas) ID fan MWe 1.89 FD fan (air) FD fan MWe 1.10 CO 2 blower CO 2 blower MWe 0.50 CO 2 compression CO 2 compression MWe 16.99 Other Mechanical cooling tower MWe 0.88 Other MWe 1.14 Suma MWe 23.08 Water consumption  Flue gas cooling Cooling Heat Evaporation  CO 2 compressor cooling Equipment water MWe t/hour t/hour Flue gas cooling 92.2 7 927.7 105.9 CO 2 compressor 19.6 1 685.9 Suma 9 613.6 105.9 14

  16. Integration to power plant First result Existing unit Existing unit Parameters Unit without CCS with CCS Gross power output MWe 250 245 Fuel consumption t/hour 214 214 Heat in fuel MWt 588 588 Electricity self-consumption MWe 24 24 Production CO 2 t/hour 211 211 Captured CO 2 t/hour 0 158 CO 2 to atmospher t/hour 211 53 23 * CCS power consumption t/hour 0 Net electrical output MWe 226 198 Total Net efficiency % 38.4 33.73 Efficiency decrease p.p 0 4.77 *Capture efficiency ca 75 % 15

Recommend


More recommend