galaxy formation in the high z universe
play

Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV - PowerPoint PPT Presentation

Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV Recent Collaborators: Isaac Shlosman (Kentucky/Osaka) Jun-Hwan Choi (UT Austin) Jason Jaacks (UT Austin) Hide Yajima (Edinburgh/Osaka) Long Do Cao (Osaka)


  1. 長峯健太郎 Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV Recent Collaborators: Isaac Shlosman (Kentucky/Osaka) Jun-Hwan Choi (UT Austin) Jason Jaacks (UT Austin) Hide Yajima (Edinburgh/Osaka) Long Do Cao (Osaka) Yuu Niino (NAOJ) Robert Thompson (W. Cape) Yang Luo (Osaka) Keita Todoroki (UNLV/Kansas) Emilio Romano-Diaz (Bonn)

  2. Outline • Intro — Λ CDM model & High-z Gal Formation • Observations & Computational Cosmology: Global quantities & Reionization of the Universe Ω * , SFRD, Galaxy MF/LF, … • the 3rd Revolution: Zoom-in Cosmo Hydro Simulation • Massive Gal. Formation at High-z — disk, dust, f esc • Accretion vs. Mergers — In Situ SF & Downsizing • Importance of Feedback in fully non-linear regime • Conclusions & Issues — Towards 2020s

  3. WMAP & Planck satellite results (WMAP9; Hinshaw+ ’13) (ESA March 2013) T ~ 2.73K black body with ~10 -5 fluctuations

  4. Cosmic Energy Budget ESA March 2013 Ω M ≈ 0 . 27 − 0 . 32 ( Ω M , Ω Λ , Ω k ) ≈ (0 . 3 , 0 . 7 , 0 . 0) Ω Λ ≈ 0 . 68 − 0 . 73

  5. Concordance Λ CDM model WMAP , Planck: ( Ω M , Ω Λ , Ω b , h, σ 8 , n s ) ≈ (0 . 3 , 0 . 7 , 0 . 04 , 0 . 7 , 0 . 8 , 0 . 96) SN Ia • Successful on large-scales • Can we understand galaxy formation in the context of Λ CDM model? FFT simulate “Back-bone of structure” Tegmark+ (2004) ( cf. パリティ 11 月号記事)

  6. Cosmic Timeline Observations are rapidly approaching the first galaxies What are the sources responsible for reionization & early chemical enrichment? Fan+ ’08 Illiev+ ’06

  7. Redshift Frontier NASA

  8. Hubble Ultra Deep Field HUDF Deepest universe that the humankind have ever seen. 2003~2004 Hubble Extreme Deep Field (XDF) 2012

  9. 1996 Lilly-Madau Diagram Stellar mass formed per unit time per unit volume • 3 major uncertainties: • dust extinction • faint-end of LF (flux limit) • IMF

  10. SFRD & UV Lum. Density (Bouwens+ ’14) (cf., Dunlop+, Ellis+, Finkelstein+, McLure+, Oesch+, Ouchi+, Schenker+, etc.)

  11. Signatures of Reionization High-z Quasar Spectrum ( ∝ SFR) Konno+’14 Mortlock+’11 • Lya/continuum is absorbed by HI in IGM at z>6 • Declining fraction of LAEs (Stark+11, Ono+12, Pentericci+11,14, Schenker+12,14, Treu+13, Finkelstein+14) • Accelerated decline at z ≳ 7 (stronger for LAE? Konno+14 ) • QSO/GRB Lya damping wing —> Large X HI (>10% at z=6-7; Mortlock+11, Totani+14 ) • Natural that no LAEs detected at z ≳ 8?

  12. First Galaxy Formation in Atomic Cooling Halos First Star Halo ~10 6 M ⦿ atomic cooling H2 cooling First Galaxy Halo ~10 8 M ⦿ Atomic Cooling Halo T vir ~ 10 4 K Bryan & Norman ’98

  13. Computational Cosmology Self-consistent galaxy formation scenario from first principles (as much as possible) z~1100 Radiative cooling/heating, Star formation, z=100 & Feedback z=10 Initial conditions z=3 Cosmological params, Dark energy, Dark matter, Baryons (+expanding universe) z=0 Gravity + Hydrodynamics

  14. Cosmological Hydrodynamic Codes Eulerian mesh (e.g. Cen & Ostriker ’92; Katz+’96; KN+’01 ) - Eulerian mesh, PM gravity solver, shock capturing hydro - fast; good baryonic mass res. at early times - low final spatial resolution in high- ρ regions, but good at low- ρ regions AMR (adaptive mesh refinement: e.g. Enzo, RAMSES, …) - Eulerian root grid, refine as necessary - multi-grid PM gravity solver, ZEUS hydro, PPM hydro AMR-SPH comparison: - high dynamic range, but slower O’Shea, KN+ ‘05 SPH (Smoothed Particle Hydrodynamics: e.g. GADGET, GASOLINE, … ) - Lagrangian, particle-based (both gas & dark matter) - Tree-PM for gravity - SPH for hydro - fast; good spatial resolution in high- ρ region, but not so good in low- ρ region Moving Mesh (e.g. AREPO)

  15. Cosmological SPH Simulations • modified GADGET-3 SPH code (Springel ’05 + additional physics) radiative cooling/heating (w/ metals), SF model, SN & galactic wind feedback with multicomponent variable velocity (MVV) model (Choi & KN ’11), self-shielding correction (KN+10) • Advantage over zoom-in runs: larger statistical samples of galaxies Run Name Box Size Particle Count m dm m gas z end com ✏ [ h � 1 Mpc] [ h � 1 M � ] [ h � 1 M � ] [ h � 1 kpc] DM & Gas H 2 2 ⇥ 144 3 2 . 01 ⇥ 10 7 4 . 09 ⇥ 10 6 N144L10 10.00 2.77 3.00 2 ⇥ 500 3 1 . 84 ⇥ 10 7 3 . 76 ⇥ 10 6 N500L34 33.75 2.70 3.00 2 ⇥ 600 3 2 . 78 ⇥ 10 5 5 . 65 ⇥ 10 4 N600L10 10.00 0.67 6.00 2 ⇥ 400 3 9 . 37 ⇥ 10 5 1 . 91 ⇥ 10 5 N400L10 10.00 1.00 6.00 2 ⇥ 400 3 3 . 60 ⇥ 10 7 7 . 34 ⇥ 10 6 N400L34 33.75 3.38 3.00 2 ⇥ 600 3 2 . 78 ⇥ 10 8 5 . 65 ⇥ 10 7 N600L100 100.00 4.30 0.00 Fiducial: Pressure-based SF model Schaye & Dalla Vecchia ’08 Choi & KN ’09, ’10, ’11 H 2 -SF model Thompson, KN+ ’13

  16. Sub-grid Multiphase ISM model Each SPH ptcl is pictured as a multiphase hybrid gas. (Yepes+ ’97) Springel & Hernquist ’03 1 log Σ SFR [ M yr -1 kpc -2 ] 0 -1 hot phase cold phase -2 -3 cold gas -4 10 100 1000 SFR: Σ gas [ M pc -2 ] For each star ptcl: gas recycling fraction Population Synthesis Model Chabrier IMF (~Kroupa) [0, 100] Msun 6 metallicity (controls the normalization; or equivalently, the SF efficiency.) various filters (n th ~ 0.1 - 1 cm -3 ) E(B-V)=0 ~ 1.0

  17. SF in the Reionization Epoch Time low-mass gals Pressure-based SF model high-mass PopIII gals Big Bang

  18. Redshift Evolution of LF & MF@z=6-9 (3-param Schechter fits) Rest-frame UV LF Galaxy Stellar Mass Fcn -6 WISH-EDS & HST 0 0 WISH-UDS (d) JWST limit z=6 z=6 α M =-2.26 -2 -2 α L =-2.15 z=9 α M =-2.87 -4 -4 -6 -6 -25 -20 -15 Rest-frame UV mag Log (Stellar Mass) Steep faint-end slope is a generic KN+ ’04; Night+ ’06; Finlator+ ’06 prediction of Λ CDM model Jaacks+ ’12a,b

  19. Okamoto+ ’14 Shimizu+ ’14 Gadget-3 SPH w/ AGN feedback

  20. UV LFs at z=4-8: Obs vs. Sim Simulations DM halo MF + M/L evol. Steepening of the faint-end slope towards high-z (Bouwens+ ’14) even to α ≲ -2 (cf., Dunlop+, Ellis+, Finkelstein+, McLure+, Oesch+, Ouchi+, Schenker+, etc.)

  21. Reionization of the Universe Madau+ ’99 Munoz & Loeb ’11 M ★ <10 8 10 8 <M ★ <10 9 M ★ >10 9 Jaacks, Choi & KN ‘12a Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

  22. SPH implementation of H 2 -SF model ρ h ✤ We modify the multiphase model to SN cloud evaporation cloud include the H 2 mass fraction. growth star formation ✤ Change t * --> free-fall time of the region. ρ H 2 GMC growth ✤ SF efficiency: ε ff = 0.01 ρ c (Krumholz & Tan 2007, Lada et al. 2010) . ⇢ H 2 ⇢ ∗ = (1 − � ) ✏ ff ˙ one SPH particle t ∗ s 3 π t ? = t ff = where 32 G ρ gas Thompson, KN+ ’13 (cf. Christensen+; Gnedin+, Robertson+…..)

  23. LFs with H 2 -SF model WISH-EDS & WISH-UDS JWST limit Jaacks, Thompson, KN ’13 HST limit Kuhlen+ ’12 (AMR) (cf. O’Shea, KN+’05: Enzo-Gadget comparison) � L � L � β � − 1 � � � α � − L Φ ( L ) = φ ∗ exp 1 + , Modified Schechter Func. L t L ∗ L ∗ (cf. Loveday+ ’97) # of low-mass gals is significantly reduced at M uv >-16 Future test with JWST.

  24. Reionization of the Universe Jaacks, Thompson, KN ’13 Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

  25. 後半: Massive Gals & Downsizing Romano-Diaz ‘14 Yajima+ ‘14

  26. Hubble Ultra Deep Field How did these gals come about?

  27. Three Revolutions in Cosmological Hydro Simulations 2001-2011 2012~ 1990’: 1st 2nd Rev. 3rd Rev. Revolution Larger scale, medium First cosmological, but resolution w. subgrid coarse calculation Zoom-in method allows models much higher res. Resolution~100 kpc Resolution~ few kpc E.g., Cen ’92 Resolution~ E.g., KN+ ’01 Katz+ ’96 20-100pc Springel & Hernquist ’03

  28. Example Zoom-in Sim Constrained Realization • Quasar host-like 5- σ region (20 cMpc/h) • 3.5 cMpc/h zoom-in region • ϵ =300 com pc; ~30pc (proper @z~10) • m dm ~5e5 M ⦿ • m gas ~1e5 M ⦿ 1 cMpc (Romano-diaz+’11, ’13 sim)

  29. z=10.2 Romano-Diaz+ ‘11 resolution ~ 30 pc (proper) Distinct massive disk gal already at z~10 Mtot ∼ 1.1 × 10 10 h − 1 M ⊙ total disk mass is ∼ 2.9 × 10 9 h − 1 M ⊙ M star,disk ~ 8 × 10 8 h − 1 M ⊙ Mgas ∼ 4.8 × 1010 M ⊙ M star ∼ 4.1 × 10 10 M ⊙ z=6.3 Yajima+ ‘14 M dust /M metal = 0.4, i.e., M dust = 0.008 M gas (Z/Z ⊙ )

  30. Yajima+ ‘14 Very high SFR The most massive galaxy: M star ∼ 8.4 × 10 10 M ⊙ , M dust ∼ 4.1 × 10 8 M ⊙ , SFR ∼ 745 M ⊙ yr − 1 ( z = 6.3) Close to solar metallicity Large amount of dust in massive gals

  31. UV: 1600 A rest-frame IR: 106 µm rest (850 µm obs) surface brightness in the log scale in units of erg s − 1 cm − 2 Hz − 1 arcsec − 2 . Yajima+ ‘14

  32. Escape Fraction of Ionizing Photons Authentic (Nakamoto+ ’01, M tot ∼ 7 × 10 11 M � Halo A 216 kpc Halo B Log X HI 48 kpc -6 -4 -2 0 M tot ∼ 1 × 10 10 M � Wise+ ’14 Yajima, Choi, KN ’11

  33. Escape Fraction of Ionizing Photons Yajima+‘11 Yajima+‘14

Recommend


More recommend