G 2 Tensor Product Splines over Extraordinary Vertices Charles Loop Scott Schaefer Microsoft Research Texas A&M University
Spline Rings
Spline Rings
Spline Rings
Problems with Catmull-Clark Subdivision • Composed of an infinite number of patches – Hard to evaluate/analyze/process – Not well suited to GPU pipeline • Not C 2 at extraordinary vertices – Not “Class A” surface – Limits use to entertainment scenarios
Problem Statement Fill the hole in an n-valent Catmull-Clark spline ring with n tensor product patches that join each other and the spline ring with second order smoothness.
Geometric Continuity k k G C • Definition P P P P [DeRose ’85] i i 1 i i 1 • Correspondence Map 2 2 : – Assumed to be identity on edge • Matrix Equation D D P i+1 i i 1 P i • Chain Rule Matrix
Cocycle Condition • For cyclic collection of patches incident on a common vertex I D D [Hahn ’89] 0 0 n 1 n 2 1 0 1 P 0 ,…,P n-1 0 n -1
Correspondence Maps 1
Correspondence Maps 1 2
Correspondence Maps 3 1 2
Correspondence Maps 1 2 interior
Correspondence Maps 3 2 exterior
Interior Correspondence Maps 2 2 : n 2 0 cos 1 1 u v , b u n b v n x , 1 1 2 0 sin n 1 1 u v , b u b v n y , 0 tan n
Interior Correspondence Maps Interior Correspondence Map
Interior Correspondence Maps Cocycle Condition: n 1 1 R n n n at type 1 vertex
Interior Correspondence Maps 1 n 1 R n n n
Interior Correspondence Maps 1 n n
Exterior Correspondence Maps 3 2
Exterior Correspondence Maps q u v , u , v s u v , v u , Cocycle Condition at type 2 vertex: 1 1 1 1 1 1 Q S R Q S R n n n n n m m m m m
Exterior Correspondence Maps 1 1 1 1 1 1 Q S R Q S R n n n n n m m m m m
Exterior Correspondence Maps 1 1 1 Q S R n n n n n
Exterior Correspondence Maps 2 2 : n s u v , v u , Cocycle Condition at type 3 vertex: 1 1 1 1 S S S S S S S S k k l l m m n n
Exterior Correspondence Maps n u v , 4 5 8 ∞ n = 3
Boundary Data 10 11 21 a a a i 2 i 1 i 1 10 00 10 20 a a a a T 3 i 1 i i 1 i 1 3 H u v , B u B v i 11 10 11 12 a a a a i 1 i i i 12 20 21 22 a a a a i 1 i i i
Boundary Data 10 11 21 a a a i 2 i 1 i 1 10 00 10 20 a a a a T 3 i 1 i i 1 i 1 3 H u v , B u B v i 11 10 11 12 a a a a i 1 i i i 12 20 21 22 a a a a i 1 i i i
Patch Smoothness Constraints • External Constraints j j 1, 1, , 0,1,2 P t H t j j i j i n u u • Internal Constraints j k j k 1 1 0, ,0 , 0,1,2 P t P r t j k j k i j k i 1 n n n u v u v • Constraint System 55 64 7 64 n n n n C , W Cp Wa
Bicubic Energy 1 1 2 2 4 4 energy P u v , P u v , du dv i i 4 4 u v 0 0
Bicubic Energy 1 1 2 2 4 4 energy P u v , P u v , du dv i i 4 4 u v 0 0 T p E p i i
Constrained Minimization T p 0 E C a W C 0 E 0 0 ˆ ˆ H p 0 E 0 E c j j E , j 0, n 1 ˆ ˆ ˆ 0 w c 0 j j j 0 0 E
Basis Functions
Support Constraints
Support Constraints
Basis Function Plots
Results Catmull-Clark This Scheme Loop ‘04
Results Catmull-Clark This Scheme
Results Catmull-Clark This Scheme
Boundary Basis Functions
Results Catmull-Clark This Scheme
Results Catmull-Clark This Scheme
Conclusions • G 2 piecewise polynomial surface – Bidegree 7 – Finitely many pieces – Handle meshes with boundary • Negative weights – Convex minimum? • Valence 3 has high curvature hot spots – Solve as special case?
Thank you for your attention
Recommend
More recommend