lax gray tensor product for 2 quasi categories
play

Lax Gray tensor product for 2-quasi-categories Yuki Maehara - PowerPoint PPT Presentation

Lax Gray tensor product for 2-quasi-categories Yuki Maehara Macquarie University CT 2019 Yuki Maehara Lax Gray tensor product for 2-quasi-categories Lax Gray tensor product of 2 -categories In lax Gray tensor product A B , ( f, y ) f


  1. Lax Gray tensor product for 2-quasi-categories Yuki Maehara Macquarie University CT 2019 Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  2. Lax Gray tensor product of 2 -categories In lax Gray tensor product A ⊠ B ,  ( f, y ) f  ( x, y ) ( x ′ , y ) x ′ in A  x � ( x, g ) ( x ′ , g )  g y ′ in B  y ( x, y ′ ) ( x ′ , y ′ ) ( f, y ′ ) does not commute strictly Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  3. Lax Gray tensor product of 2 -categories In lax Gray tensor product A ⊠ B ,  ( f, y ) f  ( x, y ) ( x ′ , y ) x ′ in A  x ⇒ � = ( x, g ) ( x ′ , g )  g y ′ in B  y ( x, y ′ ) ( x ′ , y ′ ) ( f, y ′ ) does not commute strictly, but admits a comparison 2 -cell. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  4. Lax Gray tensor product of 2 -categories In lax Gray tensor product A ⊠ B ,  ( f, y ) f  ( x, y ) ( x ′ , y ) x ′ in A  x ⇒ � = ( x, g ) ( x ′ , g )  g y ′ in B  y ( x, y ′ ) ( x ′ , y ′ ) ( f, y ′ ) does not commute strictly, but admits a comparison 2 -cell. Coherence conditions id id ⇒ ⇒ ⇒ ⇒ = = = id id ⇒ ⇒ = + “vertical” counterparts ⇒ ⇒ Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  5. ∆ ∆ consists of free categories [ n ] : 0 1 · · · n Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  6. ∆ and Θ 2 ∆ consists of free categories [ n ] : 0 1 · · · n Θ 2 consists of free 2-categories [ n ; q 1 , . . . , q n ] : 0 0 0 . . . . . . 0 1 · · · n . . . q 1 q 2 q n Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  7. 2 -quasi-categories Definition A 2 -quasi-category is a fibrant object in � Θ 2 = [Θ op 2 , Set ] wrt Ara’s model structure. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  8. 2 -quasi-categories Definition A 2 -quasi-category is a fibrant object in � Θ 2 = [Θ op 2 , Set ] wrt Ara’s model structure. Theorem 2 -quasi-categories and fibrations into them can be characterised by RLP wrt inner horn inclusions and equivalence extensions (introduced by Oury). Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  9. Some pictures Inner horns look like: � � � � ֒ →             ֒ →         Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  10. Some pictures Inner horns look like: � � � � ֒ →             ֒ →         Equivalence extensions look like: � � � � ∼ ∼ → = ֒ = � � � � → ֒ ∼ = Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  11. More pictures Inner horns look like:               � � ֒ → ⇒             ⇒ Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  12. More pictures Inner horns look like:               � � ֒ → ⇒             ⇒ Equivalence extensions look like:               � � ∼ = ֒ → ∼ =             ∼ = Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  13. Lax Gray tensor product of Θ 2 -sets Definition We define the lax Gray tensor product of Θ 2 -sets by extending ⊠ nerve � Θ 2 × Θ 2 2-Cat × 2-Cat 2-Cat Θ 2 cocontinuously in each variable. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  14. Lax Gray tensor product of Θ 2 -sets Definition We define the lax Gray tensor product of Θ 2 -sets by extending ⊠ nerve � Θ 2 × Θ 2 2-Cat × 2-Cat 2-Cat Θ 2 cocontinuously in each variable. Theorem Θ 2 × � � ⊗ � The resulting bifunctor Θ 2 Θ 2 is left Quillen. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  15. Lax Gray tensor product of Θ 2 -sets Definition We define the lax Gray tensor product of Θ 2 -sets by extending ⊠ nerve � Θ 2 × Θ 2 2-Cat × 2-Cat 2-Cat Θ 2 cocontinuously in each variable. Theorem Θ 2 × � � ⊗ � The resulting bifunctor Θ 2 Θ 2 is left Quillen. Proof {· ∼ = ·} Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  16. Lax Gray tensor product of Θ 2 -sets Definition We define the lax Gray tensor product of Θ 2 -sets by extending ⊠ nerve � Θ 2 × Θ 2 2-Cat × 2-Cat 2-Cat Θ 2 cocontinuously in each variable. Theorem Θ 2 × � � ⊗ � The resulting bifunctor Θ 2 Θ 2 is left Quillen. Proof {· ∼ = ·} is not horizontally free, so X ⊗ {· ∼ = ·} is complicated. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  17. Lax Gray tensor product of Θ 2 -sets Definition We define the lax Gray tensor product of Θ 2 -sets by extending ⊠ nerve � Θ 2 × Θ 2 2-Cat × 2-Cat 2-Cat Θ 2 cocontinuously in each variable. Theorem Θ 2 × � � ⊗ � The resulting bifunctor Θ 2 Θ 2 is left Quillen. Proof {· ∼ = ·} is not horizontally free, so X ⊗ {· ∼ = ·} is complicated. Solution: prove X ⊗{· ∼ = ·} ≃ X ×{· ∼ = ·} . Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  18. Non-asssociativity Θ 2 [1; 0] ⊗ Θ 2 [1; 0] ⇒ ⊗ consists of � �� � � �� � (2;0 , 0) -cells (1;1) -cell Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  19. Non-asssociativity Θ 2 [1; 0] ⊗ Θ 2 [1; 0] ⇒ ⊗ consists of ⇒ � � ⊗ ⊗ contains and ⇒ ⇒ ⇒ Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  20. Non-asssociativity Θ 2 [1; 0] ⊗ Θ 2 [1; 0] ⇒ ⊗ consists of ⇒ � � ⊗ ⊗ contains and ⇒ ⇒ ⇒ � � ⇒ ⇒ ⊗ ⊗ contains and ⇒ ⇒ Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  21. n -ary tensor Definition We define the n -ary lax Gray tensor product by extending ⊠ n nerve � Θ 2 × · · · × Θ 2 2-Cat × · · · × 2-Cat 2-Cat Θ 2 � �� � � �� � n n cocontinuously in each variable. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  22. n -ary tensor Definition We define the n -ary lax Gray tensor product by extending ⊠ n nerve � Θ 2 × · · · × Θ 2 2-Cat × · · · × 2-Cat 2-Cat Θ 2 � �� � � �� � n n cocontinuously in each variable. So that: ⇒ ⊗ ⊗ contains ⇒ ⇒ Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  23. Associativity up to homotopy Proposition These form a lax monoidal structure on � Θ 2 . e.g. We have comparison maps ⊗ 2 ( ⊗ 2 ( X, Y ) , ⊗ 1 ( Z )) → ⊗ 3 ( X, Y, Z ) . Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  24. Associativity up to homotopy Proposition These form a lax monoidal structure on � Θ 2 . e.g. We have comparison maps ⊗ 2 ( ⊗ 2 ( X, Y ) , ⊗ 1 ( Z )) → ⊗ 3 ( X, Y, Z ) . Theorem (The relative version of) these comparison maps are trivial cofibrations. Yuki Maehara Lax Gray tensor product for 2-quasi-categories

  25. That’s it! Thank you! Yuki Maehara Lax Gray tensor product for 2-quasi-categories

Recommend


More recommend