higher derivative corrections from mixing color and
play

Higher derivative corrections from mixing color and kinematics - PowerPoint PPT Presentation

Higher derivative corrections from mixing color and kinematics Laurentiu Rodina IPhT, CEA Saclay with J.J. Carrasco, Z. Yin, S. Zekioglu December 12, 2019 QCD meets Gravity V Amplitude bootstrap without unitarity gauge Adler soft


  1. Higher derivative corrections from mixing color and kinematics Laurentiu Rodina 
 IPhT, CEA Saclay with J.J. Carrasco, Z. Yin, S. Zekioglu December 12, 2019 
 QCD meets Gravity V

  2. Amplitude bootstrap without unitarity gauge Adler soft UV color/ Locality + invarianc e zero theorems scaling kinematics Yang-Mills X X X Gravity X X X Einstein-Yang-Mills X X X Bi-adjoint scalar X X X NLSM X X X X DBI X X special Galileon X X X Born-Infeld X conformal dilaton X [Arkani-Hamed, LR, Trnka ’16] [LR ’16, ’18] [Carrasco, LR ’19] 2

  3. 
 What can black holes teach us about amplitudes? Proposed that soft particles carry black hole information 
 [Hawking, Perry, Strominger ’16] 
 How much BH information can soft particles carry anyway? 
 How much amplitude information can soft particles carry? 3

  4. 
 
 
 
 
 
 IR vs UV • Naive answer: IR and UV are disjoint p = zp , z → 0 A n +1 = 1 z A ( − 1) + z 0 A (0) + zA (1) + z 2 A (2) + … = ( ∞ z S 0 + z 0 S 1 ) A n + 1 ∑ z i A ( i ) i =2 = IR (soft theorem satisfying) + UV (soft theorem avoiding) • In fact, soft theorems completely constrain amplitudes! • The UV info of one particle is hidden in the IR of a di ff erent one zp 1 → 0 ⟶ O ( z ) e 1 ⋅ e 2 e 3 ⋅ p 1 e 4 ⋅ p 1 p 1 . p 2 zp 2 → 0 ⟶ O (1/ z ) 4

  5. 
 
 Adler zero • NLSM, scalar theory of Nambu-Goldstone bosons 
 p 1 ⋅ p 3 p 4 ⋅ p 6 A 6 = ( p 1 + p 2 + p 3 ) 2 + … A 4 = p 1 ⋅ p 3 • Adler zero: 
 p i → zp i , z → 0 ⇒ A nlsm → O ( z ) • Adler zero uniquely fixes NLSM amplitudes (DBI, sGal) 
 [Cheung, Kampf, Novotny, Trnka, ’14][Arkani-Hamed, LR, Trnka, ’16][LR ’16] • Implies Yang-Mills uniqueness from soft theorems n +1 → ( n +1 → ( z S 0 + z 0 S 1 ) A n + O ( z ); z S 0 + z 0 S 1 ) A n + O ( z ) 1 1 A YM B YM A YM n +1 − B YM n +1 → O ( z ) 5

  6. 
 “Adler 1/0” • UV scaling under two particle BCFW shifts fixes YM, GR [LR ’16] • GR integrands via UV [Edison, Herrmann, Parra-Martinez, Trnka ’19] • Scalar theories? 
 p i → z p i , z → ∞ • Fixes NLSM, sGal, bi-adjoint scalar [Carrasco, LR ’19]

  7. Possibility: IR/UV duality • IR or UV behavior ⇒ unique S-matrix solution • Conformal symmetry? [Loebbert, Mojaza, Plefka ’18] 7

  8. 
 
 Color-kinematic duality 𝒝 = ∑ c i n i d i • Color-dual representation: satisfy antisymmetry and Jacobi c , n • 1. Double copy 
 c → n ⇒ ℳ = ∑ n i n i d i • 2. Amplitude relations 
 k 12 A (2134... n ) + k 13 A (2314... n ) + . . . + k 1, n − 1 A (234...1 n ) = 0

  9. Bootstrapping via color/kinematics • Test subject: NLSM • Immensely simpler: BCJ relations + cyclic inv. 
 k 12 A (2134... n ) + k 13 A (2314... n ) + . . . + k 1, n − 1 A (234...1 n ) = 0 • BCJ relations + Locality uniquely fix NLSM amplitudes 
 [Carrasco, LR ’19] • Add Unitarity => Higher derivative NLSM • But (h.d.) NLSM = abelian Z-theory… 9

  10. 
 Higher derivatives • Open superstring? (Z-theory) (SYM) 
 ⊗ [Carrasco, Mafra, Schlotterer ’17][Mafra, Schlotterer ’17] • Open bosonic string? (Z-theory) ( DF ) 2 (YM+ ) 
 ⊗ [Huang, Schlotterer, Wen ’16][Azevedo, Chiodaroli, Johansson, Schlotterer ’18] A 4 = u 2 + 2 s t A 4 = u 2 − s t • O ( p 4 ) NLSM? ; [LR ’18][Low, Yin ’19] • Natural question: local building blocks that reach all orders in mass dim? 𝒝 = ∑ c i n i d i ? Yes! Very few building blocks are needed

  11. Mixing color with kinematics 𝒝 = ∑ c i n i d i • Traditionally color and kinematics separated • Allow mixing: c = a 1 s 12 Tr( T 1 T 2 T 3 T 4 ) + a 2 s 23 Tr( T 1 T 4 T 3 T 2 ) + … • New solutions possible! • Constructive approach?

  12. Building blocks and a composition rule • Kinematic permutation invariants spanned by 
 σ 2 = s 2 + t 2 + u 2 
 σ 3 = s 3 + t 3 + u 3 = stu • Composition rule (New Jacobi from Old Jacobi) J s ( k , j ) = k t j t − k u j u • Simplest kinematic numerator (linear): n ss => YMS s = t − u • Next simplest (quadratic): n nl s = J s ( n ss , n ss ) = s ( t − u ) => NLSM • Next: J s ( n nl , n ss ) = n ss … s σ 2 • In general scalar kin: n = n ss f ( σ 2 , σ 3 ) + n nl g ( σ 2 , σ 3 )

  13. ̂ 
 ̂ ̂ 
 
 
 
 ̂ 
 
 ̂ ̂ ̂ Modifying color factors • c s ≡ c s σ Y 2 σ X 3 • c ss s = J s ( n ss , c ) σ X 2 σ Y 3 = ( n ss t c t − n ss u c u ) σ Y 2 σ X 3 d abcd = ∑ Tr(T a T b T c T d ) • Color permutation invariant: • c nl , d = d abcd n nl s σ X 2 σ Y s 3 C = ∑ C s n s C t n t C u n u c ss + ̂ c nl , d ) ⟶ 𝒝 = ( ̂ c + ̂ + + s t u X , Y • String field theory limit can rearranged to manifest building blocks 
 (see our paper!) 


  14. ̂ 
 ̂ 
 ̂ ̂ ̂ ̂ ̂ Corrections to supergravity amplitudes C s n ym C t n ym C u n ym 𝒝 ym = s t u • + + s t u n ym = ̂ • Replace color with kinematics c → c | c → n ym n ym = n ym σ Y • Di ff . inv. only for c = c σ Y 2 σ X 2 σ X 3 → 3 GR hd = GR ∑ a X , Y σ Y 2 σ X 3

  15. ̂ 
 Non-susy h.d. A = ∑ c i n i • Non-susy h.d.? Need to modify n ym d i • Only 7 gauge invariant tensor structures 
 [Bern, Edison, Kosower, Parra-Martinez ’17] Bosonic string = (Z theory) ⊗ (YM + ( DF ) 2 ) n F 3 , n ( F 3 ) 2 + F 4 , n d 2 F 4 , n d 4 F 4 σ Y • Only 4 new building blocks ( 2 σ X ), , with C 3 [Broedel, Dixon ’12][Garozzo, Queimada, Schlotterer ’18][Azevedo, Chiodaroli, Johansson, Schlotterer ’18] • conjectured to be fixed by gauge inv., unitarity, BCJ relations, and ( DF ) 2 scaling in the limit 
 α ′ � → ∞

  16. Summary and Outlook • Just a few building blocks required to capture the full expansion of open superstring, a few extra to capture bosonic string • This was only single trace color structure, can be extended to double trace [Low, Yin ’19] • Composition rules exist at higher multiplicity • General building blocks, loop-level building blocks? Stay tuned!

Recommend


More recommend