fractional model parameter estimation in the frequency
play

Fractional model parameter estimation in the frequency domain using - PowerPoint PPT Presentation

Fractional model parameter estimation in the frequency domain using set membership methods Firas KHEMANE, Rachid MALTI, Xavier MOREAU SWIM June 15th 2011 1 / 43 Objectives Fractional system modeling using uncertain frequency responses


  1. Fractional model parameter estimation in the frequency domain using set membership methods Firas KHEMANE, Rachid MALTI, Xavier MOREAU SWIM June 15th 2011 1 / 43

  2. Objectives Fractional system modeling using uncertain frequency responses ◮ Extension of fractional derivatives and integrals to interval derivatives and integrals. ◮ Applying set membership approaches to estimate uncertain coefficients and uncertain derivative orders in fractional models ◮ Using tree set membership inclusion functions on frequency domain data based on rectangular, polar, and circular representations of complex intervals ◮ Merging all three solutions to obtain smaller intervals 2 / 43

  3. Table of contents 1 From fractional derivative to interval derivative 2 Fractional systems 3 Set membership estimation using uncertain frequency response 4 Numerical example 5 Application : Thermal diffusion system 6 Conclusion

  4. From fractional derivative to interval derivative 1 From fractional derivative to interval derivative 2 Fractional systems 3 Set membership estimation using uncertain frequency response 4 Numerical example 5 Application : Thermal diffusion system 6 Conclusion 4 / 43

  5. From fractional derivative to interval derivative Fractional integration Cauchy formula Z t Z τ 1 Z τ n − 1 I n f ( t ) = . . . f ( τ n − 2 ) dτ n − 2 . . . dτ 1 0 0 0 Riemann-Liouville integral Z t 1 f ( τ ) ∆ I ν f ( t ) ( t − τ ) 1 − ν dτ, ∀ ν ∈ R ∗ = + Γ ( ν ) 0 Laplace transform 20 − 10 dB/dec 10 Magnitude (dB) L ( I ν f ( t )) = 1 s ν L ( f ( t )) , 0 −10 −20 1 −2 −1 0 1 2 Frequency characteristics of 10 10 10 10 10 Frequency (rad/s) s ν 0 8 ˛ ˛ 1 Gain (dB) : 20 log ˛ = − 20 ν log w ˛ ˛ > (j ω ) ν > ˛ Phase (deg) < −45 “ ” > 1 = − ν π Phase (rad) : arg 2 . > : (j ω ) ν −90 −2 −1 0 1 2 10 10 10 10 10 Frequency (rad/s) 5 / 43

  6. From fractional derivative to interval derivative Fractional derivative unwald definition Gr¨ ! ! ∞ X 1 k D ν f ( t ) = lim ( − 1) k f ( t − kh ) , ν ∈ R + h ν ν h → 0 k =0 Laplace transform L ( D ν f ( t )) = s ν L ( f ( t )) . 20 10 Magnitude (dB) 0 10 dB/dec Frequency characteristics of s ν −10 −20 8 20 log | (j ω ) ν | = 20 ν log( w ) , −2 −1 0 1 2 Gain (dB) : 10 10 10 10 10 Frequency (rad/s) < 90 arg ((j ω ) ν ) = ν π Phase (rad) : 2 . : Phase (deg) 45 0 −2 −1 0 1 2 10 10 10 10 10 Frequency (rad/s) 6 / 43

  7. From fractional derivative to interval derivative Interval integration Definition Z t n o 1 f ( τ ) ∆ I [ ν ] f ( t ) = ( t − τ ) 1 − ν dτ, ν ∈ [ ν ] Γ ( ν ) 0 nu=0.5 500 nu=0.6 nu=0.7 nu=0.8 Example 400 nu=0.9 nu=1 nu=1.1 ( 300 nu=1.2 t 2 I [ ν ] f(t) if t ≥ 0 , nu=1.3 nu=1.4 f ( t ) = 200 nu=1.5 0 if t < 0 100 Integration by real interval 0 [ ν ] = [0 . 5 , 1 . 5] 1 2 3 4 5 6 7 8 9 10 t Z t n o τ 2 1 ∆ I [ ν ] f ( t ) = ( t − τ ) 1 − ν dτ, ν ∈ [0 . 5 , 1 . 5] Γ ( ν ) 0 7 / 43

  8. From fractional derivative to interval derivative Frequency characteristics Laplace transform 40 − 14 dB/dec n 1 o 20 Gain (dB) L { I [ ν ] ( f ( t )) } = s ν L { f ( t ) } , ν ∈ [ ν ] 0 − 10 dB/dec −20 1 −40 Frequency characteristics of −2 −1 0 1 2 10 10 10 10 10 s [ ν ] Pulsation (rad/s) 8 ˛ ˛ 0 ˛ ˛ ˛ ˛ < ˛ 1 ˛ 1 f G ([ ν ]) = = 20 log ˛ ˛ , −20 s [ ν ] (j ω ) [ ν ] “ dB ” “ ” Phase ( ° ) −40 : 1 1 f φ ([ ν ]) = arg = arg −60 s [ ν ] (j ω ) [ ν ] −80 −2 −1 0 1 2 10 10 10 10 10 Pulsation (rad/s) Monotonicity ◮ Gain ˛ 1 ˛ 8 = [ − 20 ν log ω, − 20 ν log ω ] , ω ∈ ]0 , 1] , ˛ ˛ s [ ν ] dB < ˛ 1 ˛ = [ − 20 ν log ω, − 20 ν log ω ] , ω ∈ [1 , + ∞ [ : ˛ ˛ s [ ν ] dB ◮ Phase f φ ([ ν ]) = [ − ν π 2 , − ν π 2 ] 8 / 43

  9. From fractional derivative to interval derivative interval derivative Gr¨ unwald ! ! n o ∞ X 1 k D [ ν ] f ( t ) = ( − 1) k lim f ( t − kh ) , ν ∈ [ ν ] . h ν ν h → 0 k =0 Example ( nu=0.5 80 t 2 nu=0.6 if t ≥ 0 , nu=0.7 f ( t ) = 70 nu=0.8 0 if t < 0 , nu=0.9 60 nu=1 nu=1.1 50 nu=1.2 D [ ν ] f(t) nu=1.3 40 nu=1.4 nu=1.5 30 20 10 0 1 2 3 4 5 6 7 8 9 10 t Derivative by real interval ! ! n o X ∞ 1 k D [ ν ] f ( t ) = ( − 1) k ( t − kh ) 2 lim , ν ∈ [0 . 5 , 1 . 5] . h ν ν h → 0 k =0 9 / 43

  10. From fractional derivative to interval derivative Frequency characteristics Laplace transform 40 14 dB/dec n o 20 Gain (dB) L { D [ ν ] ( f ( t )) } = s ν L { f ( t ) } , ν ∈ [ ν ] . 0 10 dB/dec −20 −40 Frequency characteristics of s [ ν ] −2 −1 0 1 2 10 10 10 10 10 Pulsation (rad/s) 8 ˛ ˛ (j ω ) [ ν ] ˛ ˛ s [ ν ] ˛ ˛ ˛ ˛ < ˛ 80 f G ([ ν ]) = = 20 log ˛ , dB “ s [ ν ] ” “ (j ω ) [ ν ] ” 60 Phase ( ° ) : 40 f φ ([ ν ]) = arg = arg . 20 0 −2 −1 0 1 2 10 10 10 10 10 Pulsation (rad/s) Monotonicity ◮ Gain 8 ˛ ˛ s [ ν ] ˛ ω ∈ ]0 + , 1 − ] , = [20 ν log ω, 20 ν log ω ] , when ˛ dB < ˛ ˛ s [ ν ] ˛ ω ∈ [1 + , + ∞ [ = [20 ν log ω, 20 ν log ω ] , when : ˛ dB ◮ Phase f φ ([ ν ]) = [ ν π 2 , ν π 2 ] 10 / 43

  11. From fractional derivative to interval derivative Monotonicity of time domain response with respect to derivative order Fractional differential equation (FDE) D ν y ( t ) = f ( y ( t ) , u ( t )) Uncertain fractional derivative equation (FDE) D [ ν ] y ( t ) = f ( y ( t ) , u ( t )) Solution : Set of admissible trajectories Y ( t ) [ y ( t )] = [ y ( t ) , y ( t )] Objective : framing Y ( t ) by D ν y ( t ) = f ( y ( t ) , u ( t )) , D ν y ( t ) = f ( y ( t ) , u ( t )) . It is a tough problem which cannot be solved in the general case 11 / 43

  12. From fractional derivative to interval derivative Monotonicity of time domain response with respect to derivative order Example ◮ Differential equation D ν y ( t ) + λy ( t ) = u ( t ) , λ = 1 , with u ( t ) : Heaviside step function ◮ Transfer function Y ( s ) 1 U ( s ) = s ( s ν + λ ) ◮ Inverse Laplace transform of Y ( s ) U ( s ) ∞ t νk X ( − 1) k +1 λ k − 1 f ν ( t ) = Γ( νk + 1) k =1 ◮ Derivative of f ν ( t ) ∞ ( − 1) k +1 λ k − 1 t νk k d X dν f ν ( t ) = Γ( νk + 1) (log( t ) − Ψ( νk + 1)) k =1 12 / 43

  13. From fractional derivative to interval derivative Monotonicity of time domain response with respect to derivative order Derivtive of f v ( t ) with ν = 0 . 9 Step response y ( t ) 0.5 0.9 0.4 0.8 0.3 0.7 0.2 0.6 0.1 ν =0.2 0.5 f ν (t)’ ν =0.3 y(t) 0 ν =0.4 0.4 −0.1 ν =0.5 ν =0.6 0.3 −0.2 ν =0.7 0.2 ν =0.8 −0.3 ν =0.9 0.1 −0.4 −0.5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 6 Temps Temps Solving uncertain differential equation with uncertain differential orders still an open problem.. ! 13 / 43

  14. Fractional systems 1 From fractional derivative to interval derivative 2 Fractional systems 3 Set membership estimation using uncertain frequency response 4 Numerical example 5 Application : Thermal diffusion system 6 Conclusion 14 / 43

  15. Fractional systems Application Fractional systems are gaining more and more interest in the scientific and industrial communities Area of Control : ◮ CRONE controllers base on fractional calculus ◮ Fractional PID controllers Mechanics : ◮ Performance of CRONE suspension in vibration isolation Signal processing : ◮ Performance of fractional operators in modeling fractal noise Thermal domain : ◮ Performance of fractional operators in modeling flux diffusion 15 / 43

  16. Fractional systems Fractional system representation Differential equation y ( t ) + a 1 D α 1 y ( t ) + a 2 D α 2 y ( t ) + . . . + a N D α N y ( t ) = b 0 D β 0 u ( t ) + b 1 D β 1 u ( t ) + b 2 D β 2 u ( t ) + . . . + b M D β M u ( t ) , Commensurable order ν : Commensurable order ν is the biggest real number such that all derivative orders of the differential equation are its integer multiples α i β j ν ∈ N , i = 1 , . . . , N and ν ∈ N , j = 0 , . . . , M Fractional transfer function Commensurable transfer function M M b j s β j b j s jν P P j =0 j =0 G ( s, θ ) = , G ( s, θ ) = , N N P a i s α i P a i s iν 1 + 1 + i =1 i =1 θ = [ b 0 . . . b M , a 1 . . . a N , β 0 . . . β M , α 1 . . . α N ] θ = [ b 0 . . . b M , a 1 . . . a N , ν ] with 2( N + M + 1) parameters with ( N + M + 2) parameters 16 / 43

  17. Fractional systems Fractional system representation State space representation  x ( ν ) ( t ) = Ax ( t ) + Bu ( t ) y ( t ) = Cx ( t ) + Du ( t ) Stability theorem Assume a fractional and commensurable transfer function and R ν = Q ν /P ν its rational form. F is stable iff : 0 < ν < 2 , and | arg( s k ) | > ν π ∀ s k ∈ C , P ν ( s k ) = 0 such 2 . I m ( s k ) I m ( s k ) I m ( s k ) ν π ν π ν π 2 R e ( s k ) R e ( s k ) 2 R e ( s k ) 2 ◮ a) ν < 1 ◮ b) ν = 1 ◮ c) ν > 1 17 / 43

  18. Set membership estimation using uncertain frequency response 1 From fractional derivative to interval derivative 2 Fractional systems 3 Set membership estimation using uncertain frequency response 4 Numerical example 5 Application : Thermal diffusion system 6 Conclusion 18 / 43

Recommend


More recommend