the harmonic analysis of kernel functions
play

The harmonic analysis of kernel functions Mattia Zorzi Department - PowerPoint PPT Presentation

The harmonic analysis of kernel functions Mattia Zorzi Department of Information Engineering University of Padova Cison di Valmarino, September 26th, 2016 Joint work with: A. Chiuso (University of Padova) Kernels in system identification


  1. The harmonic analysis of kernel functions Mattia Zorzi Department of Information Engineering University of Padova Cison di Valmarino, September 26th, 2016 Joint work with: A. Chiuso (University of Padova)

  2. Kernels in system identification Model class (e.g. OE models) ∞ � y t = g s u t − s + e t g t impulse response s = 1 Gaussian linear regression model     y 1 g 1 . y N = Φ θ + e N y N := g 2 .  , θ :=     .   .  . . y N θ ∼ N ( 0 , K ) , K kernel function g t is modeled as Gaussian process with zero mean and covariance function Cov [ g t g s ] = K ( t , s ) M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 2 / 15

  3. Kernels in system identification Model class (e.g. OE models) e t u t y t ∞ � y t = g s u t − s + e t g t impulse response s = 1 Gaussian linear regression model     y 1 g 1 . y N = Φ θ + e N y N := g 2 .  , θ :=     .   .  . . y N θ ∼ N ( 0 , K ) , K kernel function g t is modeled as Gaussian process with zero mean and covariance function Cov [ g t g s ] = K ( t , s ) M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 2 / 15

  4. Kernels in system identification Model class (e.g. OE models) e t u t y t ∞ � y t = g s u t − s + e t g t impulse response s = 1 Gaussian linear regression model     y 1 g 1 . y N = Φ θ + e N y N := g 2 .  , θ :=     .   .  . . y N θ ∼ N ( 0 , K ) , K kernel function g t is modeled as Gaussian process with zero mean and covariance function Cov [ g t g s ] = K ( t , s ) M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 2 / 15

  5. Kernels in system identification Model class (e.g. OE models) e t u t y t ∞ � y t = g s u t − s + e t g t impulse response s = 1 Gaussian linear regression model     y 1 g 1 . y N = Φ θ + e N y N := g 2 .  , θ :=     .   .  . . y N θ ∼ N ( 0 , K ) , K kernel function g t is modeled as Gaussian process with zero mean and covariance function Cov [ g t g s ] = K ( t , s ) M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 2 / 15

  6. Kernels in system identification (cont’d) K encodes the a priori information on g t Our a priori information on the impulse response: BIBO stable Frequency content Question How to embed this information in the kernel function? M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 3 / 15

  7. Kernels in system identification (cont’d) K encodes the a priori information on g t Our a priori information on the impulse response: BIBO stable Frequency content Question How to embed this information in the kernel function? M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 3 / 15

  8. Kernels in system identification (cont’d) K encodes the a priori information on g t Our a priori information on the impulse response: Bode Diagram 1 20 0.8 Magnitude (dB) 0.6 0 0.4 BIBO stable −20 0.2 g t −40 0 −180 −0.2 −225 Phase (deg) −0.4 −270 Frequency content −0.6 −315 −0.8 −360 0 10 20 30 40 50 60 70 80 90 100 10 −1 10 0 10 1 t Frequency (rad/s) Question How to embed this information in the kernel function? M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 3 / 15

  9. Kernels in system identification (cont’d) K encodes the a priori information on g t Our a priori information on the impulse response: Bode Diagram 1 20 0.8 Magnitude (dB) 0.6 0 0.4 BIBO stable −20 0.2 g t −40 0 −180 −0.2 −225 Phase (deg) −0.4 −270 Frequency content −0.6 −315 −0.8 −360 0 10 20 30 40 50 60 70 80 90 100 10 −1 10 0 10 1 t Frequency (rad/s) Question How to embed this information in the kernel function? M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 3 / 15

  10. Modeling the impulse response How? g t as a sum of damped sinusoids M 2 t cos ( ω k t + ∠ c k ) | c k | e − α k � g t = k = 1 c k complex Gaussian random variable such that: ◮ c k is zero mean ◮ Cov ( c k , ¯ c j ) = p k δ k − j ◮ Cov ( c k , c j ) = 0 M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 4 / 15

  11. Modeling the impulse response How? 1 0.8 0.6 g t as a sum of damped sinusoids α k 2 t e − 0.4 g t 0.2 0 M ω k 2 t cos ( ω k t + ∠ c k ) | c k | e − α k � g t = −0.2 −0.4 k = 1 −0.6 0 10 20 30 40 50 60 70 80 90 100 t c k complex Gaussian random variable such that: ◮ c k is zero mean ◮ Cov ( c k , ¯ c j ) = p k δ k − j ◮ Cov ( c k , c j ) = 0 M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 4 / 15

  12. Modeling the impulse response How? 1 0.8 0.6 g t as a sum of damped sinusoids α k 2 t e − 0.4 g t 0.2 0 M ω k 2 t cos ( ω k t + ∠ c k ) | c k | e − α k � g t = −0.2 −0.4 k = 1 −0.6 0 10 20 30 40 50 60 70 80 90 100 t c k complex Gaussian random variable such that: ◮ c k is zero mean ◮ Cov ( c k , ¯ c j ) = p k δ k − j ◮ Cov ( c k , c j ) = 0 M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 4 / 15

  13. Modeling the impulse response (cont’d) Sum of damped sinusoids in a grid α j 2 t cos ( ω i t + ∠ c ij ) � � | c ij | e − g t = i j “Infinite dense sum” of damped sinusoids � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ c ( α, ω ) generalized Fourier transform of g t M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 5 / 15

  14. Modeling the impulse response (cont’d) α 2 α 1 ! 1 Sum of damped sinusoids in a grid k = 1 ! 2 α j 2 t cos ( ω i t + ∠ c ij ) k = 2 � � | c ij | e − g t = i j “Infinite dense sum” of damped sinusoids � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ c ( α, ω ) generalized Fourier transform of g t M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 5 / 15

  15. Modeling the impulse response (cont’d) α 2 α 1 ! 1 Sum of damped sinusoids in a grid k = 1 ! 2 α j 2 t cos ( ω i t + ∠ c ij ) k = 2 � � | c ij | e − g t = i j “Infinite dense sum” of damped sinusoids � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ c ( α, ω ) generalized Fourier transform of g t M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 5 / 15

  16. Modeling the impulse response (cont’d) α 2 α 1 ! 1 Sum of damped sinusoids in a grid k = 1 ! 2 α j 2 t cos ( ω i t + ∠ c ij ) k = 2 � � | c ij | e − g t = i j “Infinite dense sum” of damped sinusoids � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ c ( α, ω ) generalized Fourier transform of g t M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 5 / 15

  17. Harmonic analysis Let � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ Harmonic representation of the kernel function K � ∞ � ∞ K ( t , s ) = 1 p ( α, ω ) e − α t + s 2 cos ( ω ( t − s )) d ω d α 2 0 −∞ p ( α, ω ) generalized power spectral density M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 6 / 15

  18. Harmonic analysis Let � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ Harmonic representation of the kernel function K � ∞ � ∞ K ( t , s ) = 1 p ( α, ω ) e − α t + s 2 cos ( ω ( t − s )) d ω d α 2 0 −∞ p ( α, ω ) generalized power spectral density M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 6 / 15

  19. Harmonic analysis Let � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ Harmonic representation of the kernel function K � ∞ � ∞ K ( t , s ) = 1 p ( α, ω ) e − α t + s 2 cos ( ω ( t − s )) d ω d α 2 0 −∞ p ( α, ω ) generalized power spectral density M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 6 / 15

  20. Harmonic analysis Let � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ Harmonic representation of the kernel function K � ∞ � ∞ K ( t , s ) = 1 p ( α, ω ) e − α t + s 2 cos ( ω ( t − s )) d ω d α 2 0 −∞ p ( α, ω ) generalized power spectral density M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 6 / 15

  21. Harmonic analysis Let � ∞ � ∞ 2 t cos ( ω t + ∠ c ( α, ω )) d ω d α | c ( α, ω ) | e − α g t = 0 −∞ Harmonic representation of the kernel function K � ∞ � ∞ K ( t , s ) = 1 p ( α, ω ) e − α t + s 2 cos ( ω ( t − s )) d ω d α 2 0 −∞ ! p ( α ; ! ) 0 α p ( α, ω ) generalized power spectral density M. Zorzi The harmonic analysis of kernel functions September 26th, 2016 6 / 15

Recommend


More recommend