far from equilibrium dynamics of systems with
play

Far-from-equilibrium dynamics of systems with conservation laws - PowerPoint PPT Presentation

Far-from-equilibrium dynamics of systems with conservation laws Frank Pollmann Technische Universitt Mnchen T. Rakovszky, TUM C.v Keyserlingk, Birmingham TRR Condensed Matter Physics in 80 FOR All the Cities: Online 2020 1807 Quantum


  1. Far-from-equilibrium dynamics of systems with conservation laws Frank Pollmann Technische Universität München T. Rakovszky, TUM C.v Keyserlingk, Birmingham TRR Condensed Matter Physics in 80 FOR All the Cities: Online 2020 1807

  2. Quantum thermalization Investigate whether/how closed quantum many-body systems thermalize: ρ Block = ρ Thermal t | i U t = exp( − itH ) [non-integrable] | i Closed quantum system [Srednicki, Deutsch, Rigol] Entanglement accumulated during time evolution

  3. Characterizing thermalization dynamics Long times: emergent hydrodynamic relaxation ∂ t e � D r 2 e = r f Weakly coupled systems: Quasi-particles → Boltzmann equation Strongly coupled systems: Dynamics of complex quantum-many body problem!

  4. Overview (1) Entanglement growth following a quantum quench ‣ Diffusive growth of Renyi entropies in systems with diffusive transport S α >1 S 1 ∝ t S α >1 ∝ t [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)] (2) Dissipation-assisted operator evolution method for capturing hydrodynamic transport ‣ Efficient calculation of spin and energy diffusion constants [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  5. Measuring the amount of entanglement Von Neumann entropy (entanglement entropy) S vN = − Tr ρ Block log ρ Block ‣ Convenient for theoretical considerations but not experimentally accessible Renyi entropies 1 1 − α log Tr ρ α S α = Block ‣ Experimentally accessible for α = 2 [Brydges et al. arxiv 1806.05747] ‣ S vN = S 1 [Kaufman et al. Science '16] [Islam et al. Nature ’15]

  6. Entanglement growth after a quantum quench How does the entanglement entropy grow? S vN ‣ Integrable systems → Quasiparticle picture: linear growth tJ S tJ [P . Calabrese and J. Cardy ’06] ‣ Linear growth of also holds for systems S vN without quasiparticles [Kim and Huse ’13]

  7. Linear entanglement growth in random circuit models q 2 × q 2 Each gate is a Haar random unitary ‣ both grow linearly (+ random fluctuations) S 1 , S 2 Nahum Ruhman, Vijay, Haah: PRX (2017) Nahum, Vijay, Haah: PRX (2018) von Keyserlingk, Rakovszky, FP , Sondhi: PRX (2018) Zhou, Nahum (arXiv 1804.09737) Chan, De Luca, Chalker: PRX (2018)

  8. Growth of Renyi entropies Conservation laws generically lead to diffusive growth of ! S α >1 ‣ U(1)-symmetric random circuit ‣ Maps to “classical” partition function: efficient calculation of the annealed average of 2 nd Rényi entropy [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  9. Entanglement growth after a quantum quench Same behavior in a Hamiltonian with only energy conservation H = J ∑ Z r Z r +1 + h z Z r + h x X r r [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  10. Entanglement growth after a quantum quench Same behavior in a Hamiltonian with only energy conservation H = J ∑ Z r Z r +1 + h z Z r + h x X r r rare states [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  11. Intuitive picture Spin 1/2 chain with conservation S z (1) Write state as sum over histories in basis: S z (2) Split sum into two parts with . Diffusion: only down spins within distance can spoil the rare region 𝒫 ( t ) χ (3) Eckart-Young theorem: if has Schmidt rank | ϕ 0 ⟩ 2 : Rare events yield diffusive growth S α >1 S α ≤ 1 : Dominated by the mean, yielding ballistic growth Related work: Huang, arXiv:1902.00977 [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  12. Overview (1) Entanglement growth following a quantum quench ‣ Diffusive growth of Renyi entropies in systems with diffusive transport S α >1 S 1 ∝ t S α >1 ∝ t [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)] (2) Dissipation-assisted operator evolution method for capturing hydrodynamic transport ‣ Efficient calculation of spin and energy diffusion constants [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  13. Numerical complexity of many-body dynamics Directly simulate the time evolution within the full many-body Hilbert space | ψ ( t ) i = e − itH | ψ (0) i ‣ Complexity 10 spins dim=1‘024 ∝ exp( L ) 20 spins dim=1‘048‘576 ‣ Sparse methods 30 spins dim=1’073‘741‘824 (dynamical typicality) 40 spins dim=1‘099‘511‘627‘776 up to ~30 spins Matrix-Product State based numerics ‣ Complexity ∝ exp( t )

  14. “Information paradox" Quantum quench from product state ��� ���� � � � � � ���� ρ R : � � � � � � � � � � ��� ���� ���� � � � � � ���� ���� #Bits � � � � � � � � � � ��� ���� ���� � � � � � ���� ���� ���� ���� � � � � � � � � � � � � � � � Thermal state (locally) t τ th How to truncate entanglement without sacrificing crucial information on physical (local) observables? Approaches that still need to demonstrate ability to capture the correct hydro transport: [White et al.: PRB 2018] [Schmitt, Heyl: SciPost 2018] [Krumnow et al.: arXiv:1904.11999] [Wurtz et al.: Ann. Phys. 2018] [Parker et al., PRX 2019] [Leviatan et al., arXiv:1702.08894]

  15. Time-dependent variational principle (TDVP) Variational manifold: MPS states with fixed bond dimension A [2] j 2 A [3] j 3 A [4] j 4 A [5] j 5 A [1] j 1 ψ j 1 ,j 2 ,j 3 ,j 4 ,j 5 = α αβ βγ γδ δ Classical Lagrangian L [ α , ˙ α ] = h ψ [ α ] | i ∂ t | ψ [ α ] i � h ψ [ α ] | H | ψ [ α ] i Efficient evolution using a projected Hamiltonian [Haegeman et al. ’11, Dorando et al. ’09 ] ℋ χ ‣ Global conservation laws (energy, particles,…) [see also: Thermofield purification of the density matrix, Hallam, Morley, and A. G. Green ’19] [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  16. Time-dependent variational principle (TDVP) Ising model X JS z i S z i +1 − h ⊥ S x i − h || S z H = i i Ensemble of initial states: S + Energy relaxation L/ 2 | ψ (0) i ED TDVP [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  17. Time-dependent variational principle (TDVP) XXZ Model X j + S y i S y a i − j ( S x i S x j + ∆ S z i S z H = j ) i>j Sz relaxation Ensemble of initial states: S + L/ 2 | ψ (0) i ED TDVP ??? [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  18. Dissipation-assisted operator evolution method ”Artificial dissipation leads to a decay of operator entanglement, allowing us to capture the dynamics to long times” [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  19. Obtain dynamical correlations of conserved densities C ( x , t ) ≡ ⟨ q x ( t ) q 0 (0) ⟩ β =0 = ⟨ q x | e i ℒ t | q 0 ⟩ , ℒ | q x ⟩ ≡ [ H , q x ] = − i ∂ t | q x ⟩ Map operators to states: Problem: Complexity ∝ exp( t ) [Jonay, Huse, Nahum: arXiv:1803.00089]

  20. Artificial dissipation that not affects hydrodynamics Basis of operators: Pauli strings | q 0 ( t ) ⟩ = ∑ a 𝒯 | 𝒯⟩ 𝒯 = … ZX 1 1 YX 1 11 1 Y … 𝒯 Dissipator: 𝒠 ℓ * , γ | 𝒯⟩ = { | 𝒯⟩ if ℓ 𝒯 ≤ ℓ * e − γ ( ℓ 𝒯 − ℓ * ) | 𝒯⟩ otherwise Cutoff length #non-trivial Paulis ℓ * = (should be larger than support of conserved densities) Dissipation strength: γ [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  21. Artificial dissipation that not affects hydrodynamics Artificial dissipation that not affects hydrodynamics Modified evolution: dissipate after every Δ t 𝒠 ℓ * , γ | 𝒯⟩ = { q x ( N Δ t ) ⟩ ≡ ( 𝒠 ℓ * , γ e i ℒΔ t ) | 𝒯⟩ if ℓ 𝒯 ≤ ℓ * N | q x ⟩ | ˜ e − γ ( ℓ 𝒯 − ℓ * ) | 𝒯⟩ otherwise ‣ Key assumption: backflow from long to short operators is weak ‣ Compare: Short memory time in Zwanzig-Mori memory matrix [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  22. Dissipation stops growth of operator entanglement Represent dissipative evolution as tensor network Low-dimensional Matrix-Product Operator Time Evolving Block Decimation (TEBD) [Vidal ‘03] H = ∑ h j ≡ ∑ Test on Ising chain: g x X j + g z Z j + ( Z j − 1 Z j + Z j Z j +1 )/2 j j 10 − 1 3 . 5 γ = 0 . 25 3 . 0 10 − 2 γ = 0 . 10 j C j ( t ) | 2 . 5 γ = 0 . 05 h j ( t )] 10 − 3 γ = 0 . 04 2 . 0 γ = 0 . 03 S vN [˜ | 1 − P 10 − 4 1 . 5 1 . 0 χ = 32 χ = 256 10 − 5 χ = 64 χ = 512 0 . 5 χ = 128 g x = 1.4; g z = 0.9045 10 − 6 0 5 10 15 20 0 5 10 15 20 Time t Time t [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  23. Diffusion constant from mean-square displacement d 2 ( t ) ≡ ∑ (MSD) C ( x , t ) x 2 C ( x , t ) ≡ ⟨ q x | ˜ q 0 ( t ) ⟩ x ` § = 2, ∆ t = 0 . 25, ∞ = 0 . 03 50 0 . 2 L = 9 t = 3 t = 7 40 L = 13 t = 11 L = 17 MSD d 2 ( t ) h h x h 0 ( t ) i t = 15 30 L = 21 t = 19 DAOE 0 . 1 t = 23 20 10 0 0 . 0 0 5 10 15 20 ° 20 ° 10 0 10 20 Time t Position x Time-dependent diffusion constant: 2 D ( t ) ≡ ∂ d 2 ( t ) ∂ t Diffusive transport: D ≡ lim t →∞ D ( t ) [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

Recommend


More recommend