quench hydro and floquet dynamics in integrable systems
play

Quench, Hydro and Floquet dynamics in integrable systems RAQIS, - PowerPoint PPT Presentation

Quench, Hydro and Floquet dynamics in integrable systems RAQIS, Annecy, 12 September 2018 Jean-Sbastien Caux Universiteit van Amsterdam Plan of the talk Equilibrium dynamics Out-of-equilibrium dynamics Quenches Quasisolitons and


  1. Quench, Hydro and Floquet dynamics in integrable systems RAQIS, Annecy, 12 September 2018 Jean-Sébastien Caux Universiteit van Amsterdam

  2. Plan of the talk Equilibrium dynamics Out-of-equilibrium dynamics Quenches Quasisolitons and Generalized Hydrodynamics Floquet dynamics

  3. Applications of integrability Quantum magnetism Ultracold atoms Quantum dots, Atomic nuclei NV centers

  4. The general idea, simply stated: Start with your favourite quantum state (expressed in terms of Bethe states) |{ λ } i O Apply some operator on it Reexpress the result in the basis of Bethe states: X F O O|{ λ } i = { µ } , { λ } |{ µ } i { µ } F O using ‘matrix elements’ { µ } , { λ } = h { µ }|O|{ λ } i

  5. Equilibrium Dynamics from Integrability

  6. Heisenberg spin chain S ( k, ω ) , ∆ = 1 , h = 0

  7. Integrability ‘probed’ in the lab Quantum magnetism Ultracold atoms H a L 3 2nK < p 2 > H arb. u. L ‡ · 2 ‡ · ‡ · ‡ · ‡ · ‡ · ‡ · ‡ · · ‡ 4nK ‡ · ‡ · ‡ · · ‡ · ‡ · ‡ · ‡ 1 · ‡ · ‡ ‡ · ‡ · · ‡ · ‡ ‡ · · ‡ · ‡ · ‡ · ‡ · ‡ · ‡ ‡ · 0 · ‡ · ‡ · ‡ 2 ‡ · · ‡ ‡ · 1nK ‡ · · ‡ · ‡ ‡ · ‡ · H b L 5nK Ï Ì 0.0 0.5 < p 2 > H arb. u. L 1.0 1.5 2.0 2.5 Ï Ì Ì Ï Ï Ì Ï Ì Ï Ì Ï Ì Bragg detuning H kHz L Ï Ì 1 Ï Ì 10nK Ï Ì 2 Ï Ì Ì Ï Ï Ì Ï Ì H c L 1nK � Ï Ì ��� Ï Ì < p 2 > H arb. u. L 10nK Ï Ì � Ï Ì Á Ê Ï Ì Ê Á Ï Ì Á Ê Ï Ì ��� Ï Ì Ï Ì ��� Ì Ï Ï Ì Ê Á Ì Ï Ï Ì Ï Ì Ì Ï Ï Ì 0 Ï Ì 3 Ï Ì Ì Ï Ï Ì 3 Á Ê Ï Ì Ï Ì Ï Ì b 10 Ï Ì Ì Ï a T = 0nK / τ = 0 T = 25nK / τ = 0.44 Ì Ï Á Ê Ì Ï 1 Ê Á Á Ê Á Ê Ê Á Ê Á � � � � � ������ �� ������ � � Á Ê χ 2 /DOF Ê Á 15nK ��� ��������������������� T = 50nK / τ = 0.88 T = 75nK / τ = 1.19 0.0 0.5 1.0 1.5 2.0 2.5 ��� Ê Á 2 2 Ê Á Ê Á H d L 1 Á Ê Bragg detuning H kHz L Á Ê Á Ê Δ E [a.u.] 0 20 40 60 80 10 1nK Ê Á Ê Á ��� Á Ê Á Ê T (nK) < p 2 > H arb. u. L Á Ê Ê Á 10nK Ê Á Ê Á Á Ê Á Ê 1 Á Ê 2 Ê Á Á Ê 0 Ê Á Á Ê Ê Á Ê Á Á Ê χ 2 /DOF Á Ê Á Ê ��� Ê Á Ê Á Û Ú Ú Û 0.0 0.5 1.0 1.5 2.0 2.5 1 Ú Û Ú Û Û Ú 0 Û Ú Ú Û Ú Û Δ E [a.u.] Û Ú Ú Û 20nK Ú Û Û Ú ��� Û Ú 3 Bragg detuning H kHz L c Ú Û 10 Ú Û Ú Û Û Ú Ú Û Ú Û χ 2 /DOF Ú Û Û Ú 1 ��� Ú Û 1 Û Ú Ú Û Ú Û 0 20 40 60 Ú Û 80 2 Û Ú Ú Û Ú Û Û Ú Û Ú Ú Û T (nK) Ú Û Ú Û Û Ú Û Ú Ú Û Ú Û 1 0 Û Ú Ú Û Ú Û Ú Û Ú Û Δ E [a.u.] Û Ú Ú Û Û Ú Û Ú Û Ú Û Ú Û Ú 0 20 40 60 80 Û Ú T (nK) 0.0 0.5 1.0 1 1.5 2.0 2.5 ��� 0 Bragg detuning H kHz L 0 ���������� ������ 0 5 10 15 20 0 5 10 15 20 � � ω /2 π [kHz] ω /2 π [kHz] � ��� ��� ��� � ������������������� � ����������� Hope: also Quantum dots, NV centers, Atomic nuclei

  8. Out-of- Equilibrium Dynamics from Integrability

  9. Out-of-equilibrium using integrability The super Tonks-Girardeau gas Split Fermi seas (Moses states) Pulsed: Spin echo in quantum dots Quasisolitons Interaction quench in Richardson Domain wall release in Heisenberg Geometric quench Interaction cutoff in Lieb-Liniger Quenched: Release of trapped Lieb-Liniger BEC to Lieb-Liniger quench Quantum Newton’s Cradle in TG Néel to XXZ quench Generalized hydrodynamics Floquet driving central spin Driven: Floquet driving spin chains

  10. Quantum Quenches

  11. Progress on quenches

  12. Quasisoliton Dynamics in Spin Chains

  13. In memoriam Ludvig Dmitrievich Faddeev 23/3/1934 - 26/2/2017

  14. Spinon dynamics in real space/time Vlijm, Caux, PRB 2016

  15. Spinon dynamics in real space/time Vlijm, Caux, PRB 2016

  16. Solitons (classical) John Scott Russell : solitary wave of translation (1834) (Herriot-Watt University)

  17. Solitons (classical) ( Boussinesq ) Korteweg-de Vries equation ∂ t u + u ∂ x u + δ 2 ∂ 3 x u = 0 First simulations: Fermi-Pasta-Ulam- (Tsingou) absence of ergodicity Further simulations: Zabusky & Kruskal 1965 concept of a soliton Classical inverse scattering

  18. Quasisoliton scattering (quantum) Vlijm, Ganahl, Fioretto, Brockmann, Haque, Evertz and Caux, 2015 1str-1str 2str-2str 0 0 0.5 ‘Worldlines’ 50 of colliding 0.4 j ( t ) i 20 100 wavepackets: tJ h S z 0.3 150 40 ∆ = 2 200 0.2 25 50 75 25 50 75 j j 0 6 Single magnons Bound magnons Displacement as a Displacement − χ (1 , 1) 4 − χ (2 , 2) 100 function of anisotropy tJ 2 (fixed incoming momenta) 200 Measured av. Linear fits 0 20 40 60 80 0 1 2 3 4 ∆ j

  19. Generalized Hydrodynamics

  20. Generalized Hydrodynamics (GHD) B. Bertini, M. Collura, J. De Nardis and M. Fagotti, PRL 117, 207201 (2016) O. A. Castro-Alvaredo, B. Doyon and T. Yoshimura, PRX 6, 041065 (2016) B. Doyon and T. Yoshimura, SciPost Phys. 2, 014 (2017) 
 Quench from spatially inhomogeneous state gr After initial dephasings: v eff ‘hydrodynamic’ evolution v described by local GGE Fig. 3 from B. Bertini, M. Collura, J. De Nardis and Two-equation summary: M. Fagotti, PRL 117, 207201 (2016) Local continuity equation ∂ t ρ ( λ ) + ∂ x ( v eff ( λ ) ρ ( λ )) = 0 (in terms of Bethe root densities) d λ 0 ϕ ( λ , λ 0 ) Z Local effective velocity p 0 ( λ ) ρ ( λ 0 ) ( v eff ( λ 0 ) − v eff ( λ ) = v gr ( λ ) + eff ( λ )) v

  21. GHD as ‘molecular dynamics’: the flea gas B. Doyon, T. Yoshimura and JSC, PRL 2018 Encode initial state as a gas of quasisolitons Loop: evolve, collide and scatter (as if quasisolitons were classical particles, using displacement calculated from quantum phase shifts) Attractive interactions Repulsive interactions As simple as it gets in the integrability business!

  22. David Weiss’s quantum Newton’s cradle experiment Ergodicity (or lack thereof) in interacting quantum systems close to an integrable model

  23. The flea gas in a force field: simulating the quantum Newton’s cradle JSC, B. Doyon, J Dubail, R. Konik and T. Yoshimura, arXiv1711.00873 ‘Oscillation’-like dynamics at short time scales

  24. The flea gas in a force field: simulating the quantum Newton’s cradle JSC, B. Doyon, J Dubail, R. Konik, and T. Yoshimura, arXiv:1711.00873 ‘Relaxation’-like dynamics at long time scales

  25. Floquet Dynamics

  26. The simple pendulum on its head Pyotr L. Kapitza (8/7/1894-8/4/1984)

  27. Floquet basics Unitary time evolution operator under H ( t ) = ˆ ˆ action of periodic Hamiltonian H ( t + T ) R t P ( t ) e − i ˆ ˆ 0 dt 0 H ( t 0 ) ) = ˆ U ( t ) = T ( e − i H F t “fast motion” operator Floquet P ( t + T ) = ˆ ˆ Hamiltonian P ( t ) ˆ P ( nT ) = 1 ( n ∈ Z ) Stroboscopic Floquet operator U ( T ) = e − i ˆ U F ≡ ˆ ˆ H F T Diag’n: X X ˆ ˆ e − i θ n | φ n ih φ n | ✏ n | � n ih � n | H F = U F = n n t evolution: | φ n ( t ) i = ˆ | ψ n ( t ) i = e − i ✏ n t | φ n ( t ) i , P ( t ) | φ n i

  28. Floquet’ing integrable models P . Claeys and JSC, arXiv:1708.07324 Idea: take a one-parameter family of integrable models do quench/dequench sequences on this manifold T { H 2 (1 − η ) T H 1 η T t Integrable manifold η = 0 Time-avg H 2 η = 1 Hamiltonian H avg = η H 1 + (1 − η ) H 2 also integrable H 1

  29. “Quench-dequench” Floquet protocol Let’s consider the simple case of periodically “switching” between two Hamiltonians: ( ˆ for 0 < t < η T, H 1 ˆ H ( t ) = ˆ for H 2 η T < t < T, so U F ≡ e − i ˆ H F T = e − i (1 − η ) T ˆ H 2 e − i η T ˆ ˆ H 1 One then finds the nice identities ✏ n = ✓ n ∂θ n T = h � n | ˆ ∂ T = h φ n | ˆ H F | � n i H avg | φ n i H Avg = η ˆ ˆ H 1 + (1 − η ) ˆ with t-avg Hamiltonian H 2

  30. Floquet Dynamics: XXZ chain

  31. Floquet’ing integrable models P . Claeys and JSC, arXiv:1708.07324 XXZ Hamiltonian: ˆ X i +1 + S y i S y S x i S x i +1 + ∆ ( t ) S z i S z ⇥ ⇤ H ( t ) = − J i +1 i and Floquet protocol: binary switch between ∆ 1 ∆ 2 U F = e − i (1 − η ) T ˆ H 2 e − i η T ˆ Stroboscopic Floquet operator: ˆ H 1 No analytical solution ☹ , must rely on numerics Focus on sector with k = 0 and m z = 1 / 3

  32. Floquet’ing integrable models P . Claeys and JSC, arXiv:1708.07324 ∆ 1 , 2 = − 2 , − 3 ∆ 1 , 2 = − 2 , 3 π π Floquet phases, θ n 0 0 quasienergies and avg quasienergies − π − π as a function of T 4 2 2 1 θ n /T 0 0 All crossings − 2 − 1 are avoided − 4 − 2 4 2 2 1 Possible to achieve ∂ T θ n 0 0 targeted state − 2 − 1 preparation − 4 − 2 0 1 2 3 0 2 4 6 Period T Period T

Recommend


More recommend