yu stroganov the importance of being odd
play

Yu. Stroganov, The importance of being odd Kiev 2000 Typeset by - PowerPoint PPT Presentation

Yu. Stroganov, The importance of being odd Kiev 2000 Typeset by Foil T EX Integrability and combinatorics, 2014 N. Kitanine Combinatorics of the form factors Combinatorics of the form factors of critical integrable models N.


  1. Yu. Stroganov, “The importance of being odd” Kiev 2000 – Typeset by Foil T EX – Integrability and combinatorics, 2014

  2. N. Kitanine Combinatorics of the form factors Combinatorics of the form factors of critical integrable models N. Kitanine IMB, Universit´ e de Bourgogne Integrability and Combinatorics Conference in memory of Yu. Stroganov Presqu’ˆ ıle de Giens, 26 June 2014 In collaboration with : K. K. Kozlowski, J.M. Maillet, N. Slavnov, V. Terras – Typeset by Foil T EX – Integrability and combinatorics, 2014 1

  3. N. Kitanine Combinatorics of the form factors References: Form factor approach to the asymptotic behavior of correlation functions in critical models , N. K., K. K. Kozlowski, J. M. Maillet, N. Slavnov and V. Terras, J. Stat. Mech. (2011) P12010. arXiv:1110.0803 Form factor approach to dynamical correlation functions in critical models , N. K., K. K. Kozlowski, J. M. Maillet, N. Slavnov and V. Terras, J. Stat. Mech. (2012) P09001, arXiv:1206.2630 Long-distance asymptotic behavior of multi-point correlation functions in massless quantum integrable models , N. K., K. K. Kozlowski, J. M. Maillet and V. Terras, J. Stat. Mech., (2014) P05011 arXiv:1312.5089 – Typeset by Foil T EX – Integrability and combinatorics, 2014 2

  4. N. Kitanine Combinatorics of the form factors Critical Integrable models 1. The XXZ spin- 1 2 Heisenberg chain in a magnetic field Defined on a one-dimensional lattice with M sites, with Hamiltonian, H = H (0) − hS z , M H (0) = σ x m σ x m +1 + σ y m σ y m +1 + ∆( σ z m σ z � � � m +1 − 1) , m =1 M S z = 1 σ z [ H (0) , S z ] = 0 . � m , 2 m =1 σ x,y,z are the local spin operators (in the spin- 1 2 representation) associated with each site m m of the chain and ∆ = cos( ζ ) , ζ real, is the anisotropy parameter. h - external magnetic field; h > 0 . We impose the periodic (or quasi-periodic) boundary conditions – Typeset by Foil T EX – Integrability and combinatorics, 2014 3

  5. N. Kitanine Combinatorics of the form factors 2. The non-linear Schr¨ odinger (Lieb-Lineger) model • NLSE ≡ 1D limit of 3D Bose gas. • Simplest possible interacting massless integrable model. L � � � ∂ y Ψ † ( y ) ∂ y Ψ( y ) + c Ψ † ( y )Ψ † ( y )Ψ( y )Ψ( y ) − h Ψ † ( y )Ψ( y ) H = dy, 0 Ψ( x ) , Ψ † ( x ) quantum Bose fields � � Ψ( x ) , Ψ † ( y ) = δ ( x − y ) , L : length, c > 0 coupling constant ( repulsive regime ), h > 0 chemical potential. Both models: solution by algebraic Bethe ansatz , ground state finite Fermi zone – Typeset by Foil T EX – Integrability and combinatorics, 2014 4

  6. N. Kitanine Combinatorics of the form factors Multipoint correlation functions � � r O j ( x j ) e − H/kT � tr H � r � j =1 � O j ( x j ) = , T > 0 � e − H/kT � tr H j =1 T r r � � � O j ( x j ) � = � Ψ g | O j ( x j ) | Ψ g � , T = 0 j =1 j =1 where | Ψ g � is the (normalized) ground state. We consider only T = 0 case. O ( x ) - local operators. Here we consider only equal-time correlation functions • For the XXZ spin chain local spin operators σ ± m , σ z m , odinger Model (NLSM) local fields Ψ( x ) , Ψ † ( x ) and local • For the Non-linear Schr¨ densities j ( x ) = Ψ † ( x )Ψ( x ) – Typeset by Foil T EX – Integrability and combinatorics, 2014 5

  7. N. Kitanine Combinatorics of the form factors Form factor approach Our goal is to study the behavior of correlation functions using their form factor expansion r � � � O j ( x j ) � = � Ψ g | O 1 ( x 1 ) | Ψ 1 � � Ψ 1 | O 2 ( x 2 ) | Ψ 2 � . . . � Ψ r − 1 | O r ( x r ) | Ψ g � j =1 | ψ 1 � ,..., | ψr − 1 � Main difficulty : form factors scale to zero in the limit L → ∞ for critical models. � Ψ g | O † ( x ) | Ψ 1 � � Ψ 1 | O (0) | Ψ g � = L − θ e ix P ex A (Ψ 1 , Ψ g ) Analyze the form factor series for large (but finite) system size. Hence we need to describe states that will contribute to the leading behavior of the series in the limits x → ∞ and L → ∞ with x << L , and also to compute the corresponding form factors and their behavior in these limits – Typeset by Foil T EX – Integrability and combinatorics, 2014 6

  8. N. Kitanine Combinatorics of the form factors Algebraic Bethe ansatz and form factors 1. Diagonalise the Hamiltonian using ABA 1979 Faddeev, Sklyanin, Takhtajan → key point : Yang-Baxter algebra A ( λ ) , B ( λ ) , C ( λ ) , D ( λ ) → | ψ � = B ( λ 1 ) . . . B ( λ N ) | 0 � with { λ } satisfying Bethe equations 2. Describe the ground state and excited states → Bethe equations. 3. Act with local operators on eigenstates → solve the quantum inverse problem 1999 N.K., Maillet, Terras O ( x ) = f ( A, B, C, D ) → use Yang-Baxter commutation relations 4. Compute the resulting scalar products (determinant representation) 1989 Slavnov → determinant representation for the form factors in finite volume 1999 N.K., Maillet, Terras 5. Analysis of the form factors in the thermodynamic limit. 2010 N.K., Kozlowski, Maillet, Slavnov, Terras – Typeset by Foil T EX – Integrability and combinatorics, 2014 7

  9. N. Kitanine Combinatorics of the form factors The ground state Ground state solution of the Bethe equations can be described in terms of real rapidities λ j densely filling (with a density ρ ( λ ) ) the Fermi zone [ − q, q ] : N j − N + 1 � � � Lp 0 ( λ j ) − ϑ ( λ j − λ k ) = 2 π , j = 1 , . . . , N. 2 k =1 With bare momentum : p 0 ( λ ) = i log sinh( iζ/ 2 + λ ) for XXZ , p 0 ( λ ) = λ for NLS sinh( iζ/ 2 − λ ) and bare scattering phase ϑ ( λ ) = i log sinh( iζ + λ ) ϑ ( λ ) = i log ic − λ for XXZ , for NLS. sinh( iζ − λ ) ic + λ – Typeset by Foil T EX – Integrability and combinatorics, 2014 8

  10. N. Kitanine Combinatorics of the form factors The particle-hole spectrum Excited states parametrized by numbers { µ ℓa } N ′ with N ′ = N + k , involving other 1 choices of integers ℓ 1 < · · · < ℓ N ′ in the rhs : N ′ ℓ j − N ′ + 1 � � j = 1 , . . . , N ′ . � Lp 0 ( µ ℓj ) − ϑ ( µ ℓj − µ ℓk ) = 2 π , 2 k =1 New set of integers can be presented in terms of particle and hole quantum numbers ℓ a = a , a ∈ { 1 , . . . , N ′ } \ { h 1 , . . . , h n } ℓ ha = p a , p a ∈ Z \ { 1 , . . . , N ′ } . To every choice of integers { p a } and { h a } there is an associated configuration of rapidities for the particles { µ pa } and for the holes { µ ha } . We don’t consider complex solutions for XXZ (open problem, can contribute for the dynamical correlation functions). – Typeset by Foil T EX – Integrability and combinatorics, 2014 9

  11. N. Kitanine Combinatorics of the form factors Thermodynamics of the excited states • ”holes” in continuous distribution of rapidities at µ h 1 , . . . , µ hn • new ”particle” rapidities at µ p 1 , . . . , µ pn 1 F Lρ Lρ ✛ ✲ ✲ ✛ Ground State × × • • • • • • • • • • × × × × • ◦ ◦ • Exited × • • • • • • • • × × × ⇒ Excited state’s roots µ j shifted infinitesimally in respect to the ground state roots λ j . 1 � µ p 1 , . . . , µ pn � � � + O( L − 2 ) µ j − λ j = Lρ ( λ j ) · F λ j � µ h 1 , . . . , µ hn ⇒ Additive excitation spectrum. n n � � P ex − P G.S. = p ( µ pa ) − p ( µ ha ) and E ex − E G.S. = ε ( µ pa ) − ε ( µ ha ) a =1 a =1 – Typeset by Foil T EX – Integrability and combinatorics, 2014 10

  12. N. Kitanine Combinatorics of the form factors Dressed quantities Lieb equation for the density of Bethe roots q ρ ( λ ) − 1 K ( λ − µ ) ρ ( µ ) dµ = 1 � 2 πp ′ K ( λ ) = ϑ ′ ( λ ) . 0 ( λ ) , with 2 π − q Similar integral equations can be written for the dressed charge , dressed momentum , dressed energy and dressed phase :  Z ( λ )   Z ( µ )   1  q 1 � p ( λ ) p ( µ ) p 0 ( λ )        − K ( λ − µ )  dµ =       ε ( λ ) ε ( µ ) ε 0 ( λ ) 2 π     − q φ ( λ, ν ) φ ( µ, ν ) ϑ ( λ − ν ) Boundary value of the dressed charge Z = Z ( ± q ) is related to the Luttinger liquid parameter K Ll = Z 2 – Typeset by Foil T EX – Integrability and combinatorics, 2014 11

  13. N. Kitanine Combinatorics of the form factors Computation of form factors F ψ 1 ψ 2 ( x ) = |� ψ 1 |O ( x ) | ψ 2 �| 2 � ψ 1 � 2 · � ψ 2 � 2 1. Determinant representation ( quantum inverse problem, scalar product ) 2. Cauchy determinant extraction: 1999 Izergin, N.K., Maillet, Terras 1 F ψ 1 ψ 2 ( x ) = det × Smooth part λ a − µ b N 3. Thermodynamic limit L, N → ∞ (global density D = N/L fixed, related to the magnetic field h ) F ψ 1 ψ 2 ( x ) · F ψ 1 ψ 2 (0) ∼ L − θ e ix P ex S D , ¯ – Typeset by Foil T EX – Integrability and combinatorics, 2014 12

Recommend


More recommend