do super cats make odd knots
play

Do Super Cats Make Odd Knots? Sean Clark MPIM Oberseminar November - PowerPoint PPT Presentation

Do Super Cats Make Odd Knots? Sean Clark MPIM Oberseminar November 5, 2015 Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 1 / 10 O DD K NOT I NVARIANTS Knots W HAT IS A KNOT ? (The unknot) (The Trefoil Knot) Sean Clark Do


  1. Do Super Cats Make Odd Knots? Sean Clark MPIM Oberseminar November 5, 2015 Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 1 / 10

  2. O DD K NOT I NVARIANTS Knots W HAT IS A KNOT ? (The unknot) (The Trefoil Knot) Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 2 / 10

  3. O DD K NOT I NVARIANTS Knots W HAT IS A KNOT ? � → R 3 � S 1 ֒ ◮ Knots = / isotopy ◮ 2D projection (avoiding triple intersections) (The unknot) (The Trefoil Knot) Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 2 / 10

  4. O DD K NOT I NVARIANTS Knots W HAT IS A KNOT ? � → R 3 � S 1 ֒ ◮ Knots = / isotopy ◮ 2D projection (avoiding triple intersections) (The unknot) ◮ Knots are isotopic iff projections equivalent under planar isotopy + Reidemeister moves ◮ Useful tool for distinguishing knots: invariants! (The Trefoil Knot) Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 2 / 10

  5. O DD K NOT I NVARIANTS Knot Invariants J ONES P OLYNOMIAL AND K HOVANOV H OMOLOGY Example (V. Jones, 1984) Given a knot (or link ) diagram D , there is a Laurent polynomial J D = J D ( q ) that is an invariant of knots. has J D = q + q − 1 . D = has J D = − q − 9 − q − 7 + q − 5 + 2 q − 3 + q − 1 . D = Thus the trefoil is not the unknot! Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 3 / 10

  6. O DD K NOT I NVARIANTS Knot Invariants J ONES P OLYNOMIAL AND K HOVANOV H OMOLOGY Example (V. Jones, 1984) Given a knot (or link ) diagram D , there is a Laurent polynomial J D = J D ( q ) that is an invariant of knots. has J D = q + q − 1 . D = Example (Khovanov, 2000) For a knot diagram D , construct complex [ D ] of graded v.s./ k , subject to rules similar to Jones polynomial: → 0 “=” q + q − 1 ] = 0 → k [ 1 ] ⊕ k [ -1 ] [ � �� � hdeg = 0 Khovanov Homology (KH) is the homology of this complex. The graded Euler characteristic of KH = Jones polynomial! Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 3 / 10

  7. O DD K NOT I NVARIANTS Knot Invariants R EPRESENTATION THEORY Example (Reshetikhin-Turaev, late 1980’s) Knots can be encoded in a category T AN of tangles . Given a “nice” Hopf algebra H and module V , can find a functor from T AN to H - REP . This defines a operator invariant of the knot. Special Case: The quantum group U q ( sl 2 ) is a “nice enough” Hopf algebra. This procedure with simple 2-dim module yields a map Q ( q ) → Q ( q ) . Evaluation at 1 is the Jones polynomial! Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 4 / 10

  8. O DD K NOT I NVARIANTS Knot Invariants C ATEGORIFICATION Both examples are categorifications : (1-cat) KH U -mod χ F (0-cat) Jones Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 5 / 10

  9. O DD K NOT I NVARIANTS Knot Invariants C ATEGORIFICATION Both examples are categorifications : ˙ (2-cat) U -mod W K (1-cat) KH U -mod χ F (0-cat) Jones ◮ Linked via categorified quantum groups (for all colored invariants) Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 5 / 10

  10. O DD K NOT I NVARIANTS Knot Invariants C ATEGORIFICATION Both examples are categorifications : ˙ (2-cat) U -mod ? W K (1-cat) KH U -mod OKH ? χ χ F (0-cat) Jones Jones ◮ Linked via categorified quantum groups (for all colored invariants) ◮ Question: Can we find similar “explanation” for OKH? Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 5 / 10

  11. O DD K NOT I NVARIANTS Knot Invariants C ATEGORIFICATION Both examples are categorifications : ˙ ˙ (2-cat) U s -mod U -mod W K K U s -mod (1-cat) KH U -mod OKH χ χ F F (0-cat) Jones Jones ◮ Linked via categorified quantum groups (for all colored invariants) ◮ Question: Can we find similar “explanation” for OKH? ◮ Conjecture: Yes, with quantum osp ( 1 | 2 n ) (Lie super algebra) Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 5 / 10

  12. Quantum osp ( 1 | 2 ) Super Categories W HAT IS U s � � Let U s = U q ( osp ( 1 | 2 )) = Q ( q ) E , F , K , K − 1 , J with rel’ns KK − 1 = 1 , KEK − 1 = q 2 E , KFK − 1 = q − 2 F , EF + FE = JK − K − 1 − q − q − 1 J 2 = 1 and J is central. Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 6 / 10

  13. Quantum osp ( 1 | 2 ) Super Categories W HAT IS U s � � Let U s = U q ( osp ( 1 | 2 )) = Q ( q ) E , F , K , K − 1 , J with rel’ns KK − 1 = 1 , KEK − 1 = q 2 E , KFK − 1 = q − 2 F , EF − π FE = JK − K − 1 π q − q − 1 J 2 = 1 and J is central, π = ± 1 . Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 6 / 10

  14. Quantum osp ( 1 | 2 ) Super Categories W HAT IS U s � � Let U s = U q ( osp ( 1 | 2 )) = Q ( q ) E , F , K , K − 1 , J with rel’ns KK − 1 = 1 , KEK − 1 = q 2 E , KFK − 1 = q − 2 F , EF − π FE = JK − K − 1 π q − q − 1 J 2 = 1 and J is central, π = ± 1 . There are important module homomorphisms: 1. R : X ⊗ Y ∼ = Y ⊗ X ( R matrix) for any X , Y ; satisfies braid rel’ns. 2. There is a simple 2-dim. module V . Q ( q ) ǫ ′ → V ⊗ V ∗ δ ′ → V ∗ ⊗ V ǫ δ Q ( q ) → Q ( q ) , → Q ( q ) δ ◦ ǫ = q + π q − 1 = πδ ′ ◦ ǫ ′ Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 6 / 10

  15. Quantum osp ( 1 | 2 ) Super Categories K NOT D IAGRAMS TO M ORPHISMS Translate a knot diagram D � a map Q ( q ) → Q ( q ) ( constant): Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 7 / 10

  16. Quantum osp ( 1 | 2 ) Super Categories K NOT D IAGRAMS TO M ORPHISMS Translate a knot diagram D � a map Q ( q ) → Q ( q ) ( constant): ◮ Cut diagram into simple pieces � Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 7 / 10

  17. Quantum osp ( 1 | 2 ) Super Categories K NOT D IAGRAMS TO M ORPHISMS Translate a knot diagram D � a map Q ( q ) → Q ( q ) ( constant): ◮ Cut diagram into simple pieces ◮ Translate each slice into a morphism δ 1 ∗ = 1 V ∗ = 1 = 1 V = 1 ∗ ⊗ δ ⊗ 1 √ π ± 1 R = R ⊗ R √ πδ ′ = δ = 1 ∗ ⊗ R ⊗ 1 √ π − 1 ǫ = ǫ ′ = ǫ ⊗ ǫ Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 7 / 10

  18. Quantum osp ( 1 | 2 ) Super Categories K NOT D IAGRAMS TO M ORPHISMS Translate a knot diagram D � a map Q ( q ) → Q ( q ) ( constant): ◮ Cut diagram into simple pieces ◮ Translate each slice into a morphism δ 1 ∗ = 1 V ∗ = 1 = 1 V = ◦ 1 ∗ ⊗ δ ⊗ 1 √ π ± 1 R = ◦ R ⊗ R √ πδ ′ = ◦ δ = 1 ∗ ⊗ R ⊗ 1 √ π − 1 ǫ = ǫ ′ = ◦ ǫ ⊗ ǫ ◮ Compose and scale by ( π q ) writhe Then we get the Jones polynomial in the variable √ π − 1 q ! = √ π − 1 ( q + π q − 1 ) = √ π − 1 q + ( √ π − 1 q ) − 1 = Example: Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 7 / 10

  19. Quantum osp ( 1 | 2 ) Super Categories H IGHER RANK AND / OR COLORED INVARIANTS Theorem (C) Let K be a knot, V ( λ ) a f.d. irrep. of U ns = U q ( so ( 1 + 2 n )) or U s = U q ( osp ( 1 | 2 n )) , and J s / ns ( q ) the corresponding colored knot invariant. √ √ K ∗ J ns Then J s K ( q ) = − 1 K ( − 1 q ) . Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 8 / 10

  20. Quantum osp ( 1 | 2 ) Super Categories H IGHER RANK AND / OR COLORED INVARIANTS Theorem (C) Let K be a knot, V ( λ ) a f.d. irrep. of U ns = U q ( so ( 1 + 2 n )) or U s = U q ( osp ( 1 | 2 n )) , and J s / ns ( q ) the corresponding colored knot invariant. √ √ K ∗ J ns Then J s K ( q ) = − 1 K ( − 1 q ) . Main idea in proof: √ U ns ∼ U s with ψ ( q ) = ◮ ∃ Complex isomorphism ψ : � = � − 1 q . ◮ ψ induces a nice functor Ψ on a rep category √ ∗ X Ψ where X = cup/cap/crossing ◮ Ψ X = − 1 Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 8 / 10

  21. Quantum osp ( 1 | 2 ) Super Categories H IGHER RANK AND / OR COLORED INVARIANTS Theorem (C) Let K be a knot, V ( λ ) a f.d. irrep. of U ns = U q ( so ( 1 + 2 n )) or U s = U q ( osp ( 1 | 2 n )) , and J s / ns ( q ) the corresponding colored knot invariant. √ √ K ∗ J ns Then J s K ( q ) = − 1 K ( − 1 q ) . Main idea in proof: √ U ns ∼ U s with ψ ( q ) = ◮ ∃ Complex isomorphism ψ : � = � − 1 q . ◮ ψ induces a nice functor Ψ on a rep category √ ∗ X Ψ where X = cup/cap/crossing ◮ Ψ X = − 1 Conclusion: U s does not give new invariants. But it may lead to new odd knot homologies! Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 8 / 10

  22. Quantum osp ( 1 | 2 ) Super Categories C URRENT I NTERESTS ◮ Construct an odd analogue of Webster’s construction. (An answer for the Jones polynomial would be nice!) ˙ U s -mod ∃ ? U s -mod OKH ∃ ∃ Jones ◮ Studying these quantum groups at roots of unity. ◮ Further study of other types of quantum superalgebras. ◮ Categorification of quantum superalgebras and reps. Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 9 / 10

Recommend


More recommend