heating in periodically driven floquet systems
play

Heating in periodically driven Floquet systems Anushya Chandran - PowerPoint PPT Presentation

QMath 2016 Heating in periodically driven Floquet systems Anushya Chandran Boston University Floquet system Periodically driven isolated system Hamiltonian H


  1. QMath 2016 Heating in periodically driven Floquet systems Anushya Chandran Boston University

  2. ννν Floquet system νννννν ννν νννννν ννν νννννν ννν νννννν Periodically driven isolated system Hamiltonian H 0 H ( t ) = H 0 + V cos( ω t ) H 1

  3. Few-body Floquet systems νννννν ννν νννννν ννν νννννν ννν νννννν ννν Rabi oscillations Kapitza pendulum Probability Time Amplitude of drive ➡ Frequency New stable equilibrium

  4. Few-body Floquet systems νννννν ννν νννννν ννν νννννν ννν νννννν ννν Rabi oscillations Kapitza pendulum Probability Time Amplitude of drive ➡ Frequency New stable equilibrium Many-body?

  5. Interest: fundamental & engineering νννννν ννν νννννν ννν νννννν ννν νννννν ννν Simplest non-equilibrium setting: what can happen? Engineer new states out of equilibrium?

  6. Interest: fundamental & engineering νννννν ννν νννννν ννν νννννν ννν νννννν ννν Simplest non-equilibrium setting: what can happen? Engineer new states out of equilibrium? Bi 2 Se 3 Wang et al (Gedik group) Aidelsburger et al (Bloch group) Science (2013) Nature (2014)

  7. Outline νννννν ννν νννννν ννν νννννν ννν νννννν ννν Steady states of Floquet systems Thermal Many-body localized (infinite Time crystal (persistent local temperature) memory) (period doubling in an “integrable” theory)

  8. Thermalization in isolated systems νννννν ννν νννννν ννν νννννν ννν νννννν ννν | ψ ( t ) i Local state A ρ A ( t ) = Tr B | ψ ( t ) ih ψ ( t ) | B

  9. Thermalization in isolated systems νννννν ννν νννννν ννν νννννν ννν νννννν ννν | ψ ( t ) i Local state A ρ A ( t ) = Tr B | ψ ( t ) ih ψ ( t ) | B No driving t →∞ ρ A ( t ) = 1 Z Tr B e − β H lim

  10. Thermalization in isolated systems νννννν ννν νννννν ννν νννννν ννν νννννν ννν | ψ ( t ) i Local state A ρ A ( t ) = Tr B | ψ ( t ) ih ψ ( t ) | B No driving With driving t →∞ ρ A ( t ) = 1 t →∞ ρ A ( t ) = 1 Z Tr B e − β H Z Tr B e − β H lim lim ∝ 1

  11. Eigenstate thermalization hypothesis (ETH) νννννν ννν νννννν ννν νννννν ννν νννννν ννν For all eigenstates E i at inverse temperature β A ρ A = Tr B | E i ih E i | = 1 Z Tr B e − β H B H | E i i = E i | E i i ETH ⇒ thermalization Generically thermalization seems to ⇒ ETH Deutsch (1991) Srednicki (1994)

  12. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Floquet/periodic U ( T ) = Te − i R T 0 H ( t ) dt 0 evolution:

  13. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Floquet/periodic U ( T ) = Te − i R T 0 H ( t ) dt 0 evolution: H 0 Energy

  14. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Floquet/periodic U ( T ) = Te − i R T 0 H ( t ) dt 0 evolution: H 0 U ( T ) Energy Floquet Quasi-energy

  15. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Undriven eigenstates ETH H 0 U ( T ) Hot Cold Energy Floquet Quasi-energy

  16. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Undriven eigenstates ETH Driven eigenstates ? H 0 U ( T ) Hot Cold Energy Floquet Quasi-energy

  17. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Undriven eigenstates ETH Driven eigenstates ? U ( T ) 1 Local drive: p h E β | U ( T ) | E α i ⇠ 2 L α β Floquet Quasi-energy Deutsch (1991) Srednicki (1994) Ponte, AC , Papic, Abanin (2015)

  18. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Undriven eigenstates ETH Driven eigenstates ? U ( T ) 1 Local drive: p h E β | U ( T ) | E α i ⇠ 2 L α ∆ αβ β ∆ αβ ∼ 1 2 L Floquet Quasi-energy Deutsch (1991) Srednicki (1994) Ponte, AC , Papic, Abanin (2015)

  19. ννν Driven eigenstates νννννν ννν νννννν ννν νννννν ννν νννννν H ( t ) = H 0 + V cos( ω t ) H 1 Undriven eigenstates ETH Driven eigenstates ? U ( T ) 1 Local drive: p h E β | U ( T ) | E α i ⇠ 2 L ∆ αβ ∼ 1 2 L Floquet eigenstates mix all temperatures! Floquet Quasi-energy Deutsch (1991) Srednicki (1994) Ponte, AC , Papic, Abanin (2015)

  20. Outline νννννν ννν νννννν ννν νννννν ννν νννννν ννν Steady states of Floquet systems Thermal Many-body localized (infinite Time crystal (persistent local temperature) memory) (period doubling in an “integrable” theory)

  21. Interacting driven bosons νννννν ννν νννννν ννν νννννν ννν νννννν ννν Driven O(N) model H ( t ) = 1 Z d d x ( | Π | 2 + | r Φ | 2 + r ( t ) | Φ | 2 + λ | Φ | 4 ) 2 r ( t ) = r 0 − r 1 cos( γ t ) AC , Sondhi (2015)

  22. Interacting driven bosons νννννν ννν νννννν ννν νννννν ννν νννννν ννν Driven O(N) model H ( t ) = 1 Z d d x ( | Π | 2 + | r Φ | 2 + r ( t ) | Φ | 2 + λ | Φ | 4 ) 2 r ( t ) = r 0 − r 1 cos( γ t ) O(2) version: Near transition from Mott insulator to superfluid r(t): modulating tunneling AC , Sondhi (2015)

  23. Interacting driven bosons νννννν ννν νννννν ννν νννννν ννν νννννν ννν Driven O(N) model H ( t ) = 1 Z d d x ( | Π | 2 + | r Φ | 2 + r ( t ) | Φ | 2 + λ | Φ | 4 ) 2 r ( t ) = r 0 − r 1 cos( γ t ) Equilibrium: canonical model for symmetry-breaking Analytical control in the large-N limit Self-consistent classical equations Z Λ d d k ! d 2 k | 2 + r ( t ) + � dt 2 + | ~ k ( t ) | 2 (2 ⇡ ) d | f ~ f ~ k ( t ) = 0 N λ AC , Sondhi (2015)

  24. Interacting driven bosons νννννν ννν νννννν ννν νννννν ννν νννννν ννν ~ ~ ~ k 3 k 1 k 2 k ( t ) 2 = | k | 2 + r ( t ) + r eff ( t ) ω ~ Feedback term Feedback term prevents parametric resonance Steady state: finite correlations with structure “Integrable”: unknown generalized Gibbs ensemble AC , Sondhi (2015)

  25. Period doubling in the driven ferromagnet νννννν ννν νννννν ννν νννννν ννν νννννν ννν Drive period = π 0 . 6 0 . 4 M ( t ) 0 . 2 0 . 0 − 0 . 2 0 10 20 30 40 50 60 t/ π 0 . 15 0 . 05 M ( t ) − 0 . 05 − 0 . 15 1584 1586 1588 1590 1592 1594 1596 1598 1600 t/ π 0 . 04 F[ M ( t ) ] 0 . 03 0 . 02 0 . 01 0 . 00 − 4 − 3 − 2 − 1 0 1 2 3 4 Frequency AC , Sondhi (2015)

  26. Outline νννννν ννν νννννν ννν νννννν ννν νννννν ννν Steady states of Floquet systems Thermal Many-body localized (infinite Time crystal (persistent local temperature) memory) (period doubling in an “integrable” theory)

  27. ννν Periodic circuits νννννν ννν νννννν ννν νννννν ννν νννννν | ψ ( n + 1) i | ψ ( n ) i = U n | ψ (0) i U | ψ ( n ) i Floquet evolution without H(t)!

  28. ννν Clifford circuits νννννν ννν νννννν ννν νννννν ννν νννννν • Clifford gates: Hadamard, Phase, CNOT • Efficiently simulable (poly(N) time for N qubits) • U † ( X 1 ⊗ Z 2 ⊗ . . . 1 N ) U = Y 1 ⊗ X 2 ⊗ . . . Z N • Can entangle • Infinite temperature locally? Gottesman-Knill (1996) Aaronson & Gotteman (2004)

  29. ννν Thermalization νννννν ννν νννννν ννν νννννν ννν νννννν t X Y Z b a c x U AC , C. R. Laumann (2015)

  30. ννν Thermalization νννννν ννν νννννν ννν νννννν ννν νννννν S A ( t ) = − Tr ρ A log 2 ρ A t X S A ( t ) Y N A = 20 Z b a c x A t U AC , C. R. Laumann (2015)

  31. ννν Thermalization νννννν ννν νννννν ννν νννννν ννν νννννν S A ( t ) = − Tr ρ A log 2 ρ A t X S A ( t ) Y N A = 20 Z b a c x A t U • Operator support grows in time • ρ A = 1 for t > vN A • Simulable system that thermalizes! AC , C. R. Laumann (2015)

  32. Localization νννννν ννν νννννν ννν νννννν ννν νννννν ννν t S A ( t ) A x t • Strictly local integrals of motion: Z i • Block spread of information • Transition to thermalization: percolation of operator support AC , C. R. Laumann (2015)

  33. Outline νννννν ννν νννννν ννν νννννν ννν νννννν ννν Steady states of Floquet systems Thermal Many-body localized (infinite Time crystal (persistent local temperature) memory) (period doubling in an “integrable” theory)

Recommend


More recommend