an overview of 3d black hole simulations
play

An Overview of 3D Black Hole Simulations Pablo Laguna Center for - PowerPoint PPT Presentation

An Overview of 3D Black Hole Simulations Pablo Laguna Center for Gravitational Physics and Geometry Center for Gravitational Wave Physics Penn State University 29 October 2002 1 Introduction Good news: A picture is emerging about how to


  1. An Overview of 3D Black Hole Simulations Pablo Laguna Center for Gravitational Physics and Geometry Center for Gravitational Wave Physics Penn State University 29 October 2002

  2. 1 Introduction • Good news: A picture is emerging about how to evolve spacetimes containing black hole singularities.

  3. 1 Introduction • Good news: A picture is emerging about how to evolve spacetimes containing black hole singularities. ⋆ Communication between mathematical and numerical relativity. ⋆ Broader range of numerical techniques. ⋆ Access to larger and faster computers. ⋆ Approximate methods motivated by data analysis needs.

  4. 1 Introduction • Good news: A picture is emerging about how to evolve spacetimes containing black hole singularities. ⋆ Communication between mathematical and numerical relativity. ⋆ Broader range of numerical techniques. ⋆ Access to larger and faster computers. ⋆ Approximate methods motivated by data analysis needs. • Bad news: No simulations of BBH orbits yet.

  5. 2 Efforts • AEI-Mexico (Alcubierre, Diener, Husam, Koppitz, Pollney, Seidel, Takahashi) • Brownsville (Campanelli, Lousto) • Cornell-Caltech (Kidder, Limblom, Pfeiffer, Scheel, Shoemaker, Teukolsky) • GSFC-NCS (Baker, Brown, Centrella, Choi) • Illinois-Bowdoin (Baumgarte, Shapiro, Yo) • LSU (Calabrese, Lehner, Neilsen, Pullin, Sarbach, Tiglio) • Oakland (Garfinkle) • Penn State (Br¨ ugmann, Jansen, Kelly, Laguna, Smith, Sperhake, Tichy) • Pittsburgh (Gomez, Szilagyi, Winicour) • Texas (Anderson, Bonning, Hawley, Matzner, Noble) • UBC (Choptuik, Pretorious)

  6. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless

  7. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless • Gauge Conditions

  8. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless • Gauge Conditions • Black Hole Singularity ⋆ Excision ⋆ Punctures

  9. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless • Gauge Conditions • Black Hole Singularity ⋆ Excision ⋆ Punctures • Boundary Conditions

  10. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless • Gauge Conditions • Black Hole Singularity ⋆ Excision ⋆ Punctures • Boundary Conditions • Numerical methods ⋆ Finite Differences ⋆ Spectral Methods ⋆ Finite Elements

  11. 3 This talk ... • 3+1 Formulations ⋆ Generalized Einstein-Christoffel Hyperbolic ⋆ Conformal-Transverse-Traceless • Gauge Conditions • Black Hole Singularity ⋆ Excision ⋆ Punctures • Boundary Conditions • Numerical methods ⋆ Finite Differences ⋆ Spectral Methods ⋆ Finite Elements • Results ⋆ Single BH evolutions ⋆ Waveforms from Lazarus and Grazing collisions ⋆ Current status on partial orbit

  12. 4 ADM Formulation Arnowitt, Deser and Misner in Gravitation ed. L. Witten (1962); York in Sources of Gravitational Radiation ed. L.L. Smarr (1979) Variables: g ij : spatial metric K ij : extrinsic curvature α : lapse function β i : shift vector Evolution equations: ∂ o g ij = − 2 α K ij −∇ i ∇ j α + α R ij + α K K ij − 2 α K ik K k ∂ o K ij = j Note: ∂ o ≡ ∂ t − L β

  13. 5 Kidder-Scheel-Teukolsky Formulation Kidder, Scheel and Teukolsky, PRD 62 , 084032 (2000) Field variables: g ij : spatial metric P ij = K ij + ˆ z g ij K � � � � �� 1 ˆ ag lm d klm + ˆ bg lm d lmk cg lm d j ) lm + ˆ dg lm d lmj ) M kij = k d kij + ˆ e d ( ij ) k + g ij ˆ + g k ( i ˆ 2 d ijk ∂ k g ij ≡ ln ( α g − σ ) Q = β i : shift vector Evolution equations: ∂ o g ij = . . . g kl ∂ k M lij + . . . ∂ o P ij ∝ ∂ o M kij ∂ k K ij + . . . ∝

  14. 6 -8 0 10 10 -12 10 i || i || -8 2 +C i C 2 +C i C 10 18x8x15 ||C ||C 24x8x15 18x8x15 32x8x15 24x8x15 -16 10 32x8x15 40x8x15 -16 10 -20 10 0 0.5 1 1.5 2 0 2000 4000 6000 8000 t/M t/M

  15. 7 BSSN Formulations Baumgarte and Shapiro, PRD 59, 024009 (1999); Shibata and Nakamura, PRD 52, 5428 (1995) Variables: 1 6 ln √ g Φ = ( √ g ) − 2 / 3 g ij = e − 4 Φ g ij g ij ˆ = g ij K ij K = e − 4 Φ ( K ij − 1 ˆ A ij = 3 g ij K ) Γ i g jk � Γ i � = ˆ jk α : lapse function β i : shift vector

  16. 8 Evolution equations: − 1 ∂ o Φ = 6 α K − 2 α ˆ ∂ o ˆ g ij = A ij A ij + 1 −∇ i ∇ i α + α ˆ A ij ˆ 3 α K 2 ∂ o K = e − 4Φ ( −∇ i ∇ j α + α R ij ) T F ∂ o ˆ A ij = α K ˆ A ij − 2 α ˆ A il ˆ A l + j Γ i − 2 ˆ A ij ∂ j α + 2 α � Γ i jk ˆ A jk ∂ o � = A ij ∂ j Φ − 4 A ij ∂ j α 12 α ˆ g ij ∂ j K − 2 ˆ + 3 α ˆ

  17. 8 Evolution equations: − 1 ∂ o Φ = 6 α K − 2 α ˆ ∂ o ˆ g ij = A ij A ij + 1 −∇ i ∇ i α + α ˆ A ij ˆ 3 α K 2 ∂ o K = e − 4Φ ( −∇ i ∇ j α + α R ij ) T F ∂ o ˆ A ij = α K ˆ A ij − 2 α ˆ A il ˆ A l + j Γ i − 2 ˆ A ij ∂ j α + 2 α � Γ i jk ˆ A jk ∂ o � = A ij ∂ j Φ − 4 A ij ∂ j α 12 α ˆ g ij ∂ j K − 2 ˆ + 3 α ˆ � � ∂ l β l � � χ + 2 Γ i − ˆ g jk � Γ i � − jk 3 Note: Γ i term χ helps to reverse the sign of ∂ l β l � Yo, Baumgarte and Shapiro gr-qc/0209066

  18. 9 −4 10 −4 10 −6 10 A1 −6 10 A2 N1 −8 10 N2 −8 10 N3 −10 10 N4 −10 10 ∆ K rms ∆ K rms −12 10 −12 10 −14 −14 10 10 −16 −16 10 10 −18 −18 10 10 0 1000 2000 3000 0 1000 2000 3000 4000 t/M t/M

  19. 10 Conformal-Traceless-Mixed Formulation Laguna and Shoemaker, CQG 19, 3679 (2002) Variables: 1 6 ln √ g Φ = ( √ g ) − 2 / 3 g ij = e − 4 Φ g ij g ij ˆ = Γ i g jk � Γ i � = ˆ jk ( √ g ) a A i j = e 6 a Φ A i A i ˆ = j j ( √ g ) k K = e 6 k Φ K ˆ K = ( √ g ) n α = e 6 n Φ α N = β i : shift vector

  20. 11 Evolution equations: − 1 K e − 6 ( n + k ) Φ 6 N � ∂ o Φ = − 2 N ˆ A ij e − 6 ( n + a ) Φ ∂ o ˆ g ij = −∇ i ∇ i α e 6 n Φ + N ˆ ∂ o ˆ A i j ˆ A j i e − 6 ( n +2 a − k ) Φ K = 1 K 2 e − 6 ( n + k ) Φ 3(1 − 3 k ) N ˆ + � � T F ∂ o ˆ A i −∇ i ∇ j α + α R i e 6 a Φ = j j (1 − a ) N ˆ K ˆ A i j e − 6 ( n + k ) Φ + � � g ij ∂ j Φ − 4 g ij ∂ j � Γ i e − 6 ( n + a ) Φ ∂ o � 8 k N � = K ˆ 3 N ˆ K � � A ij ∂ j Φ 2 N ˆ A jk � Γ i jk − 2 ˆ A ij ∂ j N + 12(1 + n ) N ˆ e − 6 ( n + a ) Φ + 3(2 + 3 χ ) ∂ l β l � � 1 Γ i − ˆ g jk � Γ i � − jk

  21. 11 Evolution equations: − 1 K e − 6 ( n + k ) Φ 6 N � ∂ o Φ = − 2 N ˆ A ij e − 6 ( n + a ) Φ ∂ o ˆ g ij = −∇ i ∇ i α e 6 n Φ + N ˆ ∂ o ˆ A i j ˆ A j i e − 6 ( n +2 a − k ) Φ K = 1 K 2 e − 6 ( n + k ) Φ 3(1 − 3 k ) N ˆ + � � T F ∂ o ˆ A i −∇ i ∇ j α + α R i e 6 a Φ = j j (1 − a ) N ˆ K ˆ A i j e − 6 ( n + k ) Φ + � � g ij ∂ j Φ − 4 g ij ∂ j � Γ i e − 6 ( n + a ) Φ ∂ o � 8 k N � = K ˆ 3 N ˆ K � � A ij ∂ j Φ 2 N ˆ A jk � Γ i jk − 2 ˆ A ij ∂ j N + 12(1 + n ) N ˆ e − 6 ( n + a ) Φ + 3(2 + 3 χ ) ∂ l β l � � 1 Γ i − ˆ g jk � Γ i � − jk Natural choices: n = − 1 , a = 1 , k = 1 / 3 , χ = 2 / 3

  22. 12

  23. 13 Gauge Conditions 0.6 Slicing conditions 0.3 • ∂ t α = − α 2 f ( α ) ( K − K o ) 0 • ∂ t α = −∇ i β i − α K 2D(300 x 29) 3 x 0.183) −0.3 3D(131 3 x 0.183) 3D(131 t α = − α 2 f ( α ) ∂ t K • ∂ 2 −0.6 even (M) 0 30 60 90 120 150 180 0.6 ψ 20 Shift conditions 0.3 • ∂ t β i = λ ∂ t � Γ i 0 t β i = F ∂ t � Γ i − η ∂ t β i • ∂ 2 3 x 0.183) −0.3 3D(131 fit −0.6 0 20 40 60 80 t (M) Alcubierre, Br¨ ugmann, Deiner, Koppits, Pollney, Seidel, Takahashi, gr-qc0206072

  24. 14 Boundary Conditions f o + u ( r − v t ) f = r

  25. 14 Boundary Conditions f o + u ( r − v t ) + h ( t ) f = r n r

  26. 15 Excision Excision

  27. 16 Black Holes via Punctures Alcubierre, Brugmann, Deiner, Koppits, Pollney, Seidel, Takahashi, gr-qc0206072 Ψ − 4 BL Ψ 4 g ij ˜ = o δ ij = O (1) ˜ Ψ − 4 BL Ψ 4 o ˆ A ij = O ( r 3 ) K ij = where Ψ o = u + Ψ BL 1 + m 1 + m 2 Ψ BL = 2 r 1 2 r 2 � � δ ij − n i n j � δ kl n k P l � 3 n i P j + n j P i − ˆ A ij = 2 r 2

  28. 17 Numerical Methods Finite Differences φ ( x i +1 ) − φ ( x i − 1 ) + O (∆ x 2 ) ∂ x φ ( x i ) = 2 ∆ x value ?

  29. 18 Numerical Methods Spectral Methods Finite Elements � φ ( x i ) = a n ψ ( x i ) n =1 ...N

  30. 19 Waveforms 0.4 ISCO, r*=31M, z−axis, m=+2 0.2 0.03 even /M 0 ψ 22 0.30m 0.015 −0.2 0.24m 0.20m Re[r ψ 4 ] −0.4 0 0 10 20 30 40 t/M −0.015 T=10M −0.03 T=9M T=0M −0.045 20 40 60 80 100 t/M Baker, Campanelli, Lousto, Takahashi, astro-ph/0202469 Alcubierre, et. al; Phys.Rev.Lett. 87 (2001) 271103

  31. 20 Conclusions • There has been substantial progress in numerical relativity. • Physics content of numerical results is increasing. • Few (couple) orbits evolutions are around the corner. • Formal mathematical input has become an important tool.

Recommend


More recommend