black hole binary simulations on supercomputers
play

Black-hole binary simulations on supercomputers U. Sperhake - PowerPoint PPT Presentation

Black-hole binary simulations on supercomputers U. Sperhake CSIC-IEEC Barcelona 2 nd Iberian Gravitational Wave Meeting 17 th February 2012 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 1 / 43 Overview


  1. Black-hole binary simulations on supercomputers U. Sperhake CSIC-IEEC Barcelona 2 nd Iberian Gravitational Wave Meeting 17 th February 2012 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 1 / 43

  2. Overview Motivation Modeling black holes in GR Black holes in astrophysics Black holes in GW physics Trans-Planckian scattering AdS/CFT, Cosmic Censorship, BH instabilities Summary U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 2 / 43

  3. 1. Motivation U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 3 / 43

  4. Black holes are out there: Stellar BHs high-mass X-ray binaries: Cygnus X-1 (1964) U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 4 / 43

  5. Black holes are out there: Stellar BHs One member is very compact and massive ⇒ Black Hole U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 5 / 43

  6. Black holes are out there: galactic BHs Supermassive BHs found at center of virtually all galaxies SMBHs conjectured to be responsible for quasars starting in the 1980s U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 6 / 43

  7. Black holes might be in here: LHC LHC CERN U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 7 / 43

  8. Motivation (AdS/CFT correspondence) BH spacetimes “know” about physics without BHs AdS/CFT correspondence Maldacena ’97 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 8 / 43

  9. 2. Modeling black holes in GR U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 9 / 43

  10. General Relativity: Curvature Curvature generates acceleration “geodesic deviation” No “force”!! Description of geometry Metric g αβ Γ α Connection βγ R αβγδ Riemann Tensor U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 10 / 43

  11. How to get the metric? Train cemetery Uyuni, Bolivia Solve for the metric g αβ U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 11 / 43

  12. How to get the metric? The metric must obey the Einstein Equations Ricci-Tensor, Einstein Tensor, Matter Tensor R αβ ≡ R µαµβ G αβ ≡ R αβ − 1 2 g αβ R µµ “Trace reversed” Ricci T αβ “Matter” Einstein Equations G αβ = 8 π T αβ Solutions: Easy! Take metric ⇒ Calculate G αβ ⇒ Use that as matter tensor Physically meaningful solutions: Difficult! ⇒ Numerics! U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 12 / 43

  13. A set of tasks To get a time evolution pf BBHs in GR Einstein equations: 1) Canonical ADM “3+1” split 2) Formulation: BSSN, GHG 3) Discretization: differencing, spectral Gauge: moving punctures, generalize harmonic gauge 1) Mesh refinement: Carpet, Paramesh, SAMRAI,... 2) Singularities: moving puncturs, excision 3) Parallelization: MPI, OpenMP,... Initial data: York-Lichnerowicz conformal split, Bowen-York Run duration: days, weeks, months Diagnostics: Newman-Penrose, Pert.Theory, Horizons, ADM U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 13 / 43

  14. Free parameters of BH binaries Total mass M Relevant for GW detection: Frequencies scale with M Not relevant for source modeling: trivial rescaling Mass ratio q ≡ M 1 M 1 M 2 M 2 , η ≡ ( M 1 + M 2 ) 2 Spin: � S 1 , � S 2 (6 parameters) Initial parameters Binding energy E b Separation Orbital ang. momentum L Eccentricity Alternatively: frequency, eccentricity U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 14 / 43

  15. BBH trajectory and waveform q = 4, non-spinning binary; ∼ 11 orbits US, Brügmann, Müller & Sopuerta ’11 Trajectory Quadrupole mode U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 15 / 43

  16. 3. Black holes in astrophysics U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 16 / 43

  17. Gravitational recoil Anisotropic GW emission ⇒ recoil of remnant BH Bonnor & Rotenburg ’61, Peres ’62, Bekenstein ’73 Escape velocities: Globular clusters 30 km / s dSph 20 − 100 km / s dE 100 − 300 km / s Giant galaxies ∼ 1000 km / s Ejection / displacement of BH ⇒ Growth history of SMBHs BH populations, IMBHs Structure of galaxies U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 17 / 43

  18. Superkicks Kidder ’95, UTB-RIT ’07 : maximum kick expected for Measured kicks v ≈ 2500 km / s for spin a ≈ 0 . 75 Extrapolated to maximal spins: v max ≈ 4000 km / s González et al. ’07, Campanelli et al. ’07 Unlikely configuration! Kick suppression S L alignment Bogdanovi´ c et al. ’07, Kesden, US & Berti ’10, ’10a “Hang-up” kicks: v up to 5 000 km / s ; Suppressed? Lousto & Zlochower ’11 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 18 / 43

  19. Spin precession and flip X-shaped radio sources Merrit & Ekers ’07 Jet along spin axis Spin re-alignment ⇒ new + old jet Spin precession 98 ◦ 71 ◦ Spin flip UTB-RIT ’06 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 19 / 43

  20. Jets generated by binary BHs Palenzuela, Lehner & Liebling ’10 Blanford-Znajek for non-spinning BH binary Einstein-Maxwell equtions with “force free” plasma Electromagnetic field extracts energy from L ⇒ jets Optical signature: double jets U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 20 / 43

  21. 4. Black holes in GW physics U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 21 / 43

  22. Gravitational Wave observations Accelerated masses generate GWs Interaction with matter very weak! Earth bound detectors: LIGO, VIRGO, GEO600, LCGT U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 22 / 43

  23. Space interferometer LISA U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 23 / 43

  24. Matched filtering Long, accurate waveforms required ⇒ combine NR with PN, perturbation theory U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 24 / 43

  25. GW data analysis � t −∞ dt ′ � t ′ −∞ dt ′′ Ψ 4 Wave strain h ≡ h + − ih × = Reisswig & Pollney ’11 � ∞ ¯ h ( f )¯ g ∗ ( f ) Inner product � h , g � ≡ 4 Re S N ( f ) df 0 Finn & Chernoff ’93, Cutler & Flanagan ’94 ρ m = � h e , h m � SNR || h m || ρ m = ( 1 − M ) � h e , h e � Mismatch || h e || Loss of sources ∼ 3 M % Accuracy � 1 /ρ for parameter estimation , || δ h || √ 2 M max requirements || h || < for detection . Lindblom et al. ’10 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 25 / 43

  26. Template construction Stitch together PN and NR waveforms EOB or phenomenological templates for ≥ 7-dim. par. space Community wide Ninja2 and NRAR projects; cf. talk by Husa U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 26 / 43

  27. Accuracy requirements on numerical simulations Errors dominated by PN contributions ⇔ Too few NR orbits Hannam et al. ’11 Details depend on Acceptable M Binary parameters Purpose (detection parameter estimation) Detector Predicted range several to > 30 orbits Hannam et al. ’10, Macdonald et al. ’11, Ohme et al. ’11, Lovelace et al. ’12 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 27 / 43

  28. Phenomenological waveform templates Non-spinning BHBs from Ajith et al. ’07 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 28 / 43

  29. Waveform in the Fourier domain h ( f ) = A ( f ) e i Ψ( f ) U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 29 / 43

  30. The template bank ( f / f mer ) − 7 / 6  if f < f merg  ( f / f mer ) − 2 / 3 A eff ( f ) = if f merg ≤ f < f ring ( f × L ( f , f ring , σ ) if f ring ≤ f < f cut  � 1 σ � L ( f , f ring , σ ) = 2 π ( f − f ring ) 2 + σ 2 / 4 Ψ eff ( f ) = 2 π ft 0 + φ 0 + ψ 0 f − 5 / 3 + ψ 2 f − 1 + ψ 3 f − 2 / 3 + ψ 4 f − 1 / 3 + ψ 6 f 1 / 3 Free parameters: { f merg , f ring , f cut , σ } , { ψ 0 , ψ 2 , ψ 3 , ψ 4 , ψ 6 } Create map with physical parameters { M , η } Non-spinning binaries: Ajith et al. ’07, Ajith ’08, Ajith et al. ’08 Subsets of spinning binaries: Ajith et al. ’09, Santamaria et al. ’10, Sturani et al. ’10 U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 30 / 43

  31. Effective One Body templates EOB method Buonanno & Damour ’99, ’00 Map GR two body problem into particle motion in effective metric Components of effective metric calculated to 3PN order Improve model by adding pseudo PN terms of higher order (to be derived from NR) Further improvements: resum PN, model non-adiabatic effects e.g. Damour ’10 Match inspiral-plunge waveform to merger-ringdown U. Sperhake (CSIC-IEEC) Black-hole binary simulations on supercomputers 17/02/2012 31 / 43

Recommend


More recommend