exotic branes and exotic branes and superconformal field
play

Exotic Branes and Exotic Branes and Superconformal Field Theories - PowerPoint PPT Presentation

Exceptional Groups as Symmetries of Nature 17 @ KEK July 18, 2017 Exotic Branes and Exotic Branes and Superconformal Field Theories Superconformal Field Theories Tetsuji KIMURA Tokyo Institute of Technology Contents 1. Exotic branes


  1. Exceptional Groups as Symmetries of Nature ’17 @ KEK July 18, 2017 Exotic Branes and Exotic Branes and Superconformal Field Theories Superconformal Field Theories Tetsuji KIMURA Tokyo Institute of Technology

  2. Contents 1. Exotic branes from F-theory Exotic SL ( 2 , Z ) monodromy 2. 3. Applications a. 6D N = ( 2 , 0 ) b. G-theory 4. Summary and discussions Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 2 -

  3. 1. Exotic branes from F-theory

  4. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects T 7 → − M D7 = R 1 R 2 · · · R 7 g s ℓ 8 − s → S ℓ 2 ℓ s R y : compact radius of y -direction s T y : R y → g s → , g s R y R y g s : string coupling constant 1 ℓ 2 s → g s ℓ 2 S : g s → , ℓ s : string length s g s Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 4 -

  5. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects R 1 R 2 · · · R 6 T 7 = M D6 → − g s ℓ 7 s M D7 = R 1 R 2 · · · R 7 g s ℓ 8 − R 1 R 2 · · · R 7 s → ← exotic! g 3 s ℓ 8 S s ℓ 2 ℓ s R y : compact radius of y -direction s T y : R y → g s → , g s R y R y g s : string coupling constant 1 ℓ 2 s → g s ℓ 2 S : g s → , ℓ s : string length s g s Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 5 -

  6. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects T F1 P S S T T T T T T T D7 D6 D5 D4 D3 D2 D1 D0 S NS5 T KK5 S S 5 2 T 2 S 6 1 5 2 4 3 3 4 2 5 1 6 0 7 7 3 3 3 3 3 3 3 3 T T T T T T T S 0 (1,6) 1 6 S 4 4 T Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 6 -

  7. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects D -dim IIB IIA D7 (1) D5 (21) D3 (35) D1 (7) D6 (7) D4 (35) D2 (21) D0 (1) F1 (7) P (7) NS5 (21) F1 (7) P (7) NS5 (21) 3 KK5 (42) KK5 (42) 0 ( 1 , 6 ) 0 ( 1 , 6 ) (240) 1 6 5 2 1 6 5 2 4 (7) (7) 2 (21) 4 (7) (7) 2 (21) 4 4 5 2 3 4 1 6 6 1 4 3 2 5 0 7 7 3 (1) 3 (21) 3 (35) 3 (7) 3 (7) 3 (35) 3 (21) 3 (1) # of charged particles = # of U ( 1 ) gauge one-form potentials = # of scalar fields = dim( E 8 ( 8 ) /SO ( 16 )) = 128 < 240 ! Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 7 -

  8. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects D -dim IIB IIA D7 (1) D5 (21) D3 (35) D1 (7) D6 (7) D4 (35) D2 (21) D0 (1) F1 (7) P (7) NS5 (21) F1 (7) P (7) NS5 (21) 3 KK5 (42) KK5 (42) 0 ( 1 , 6 ) 0 ( 1 , 6 ) (240) 1 6 5 2 1 6 5 2 4 (7) (7) 2 (21) 4 (7) (7) 2 (21) 4 4 5 2 3 4 1 6 6 1 4 3 2 5 0 7 7 3 (1) 3 (21) 3 (35) 3 (7) 3 (7) 3 (35) 3 (21) 3 (1) n has mass (tension) = R 1 R 2 · · · R b ( R b + 1 · · · R b + c ) 2 b c g n s ℓ b + 2 c + 1 s Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 8 -

  9. Exotic branes Consider charged particles in 3D maximal supergravity : They are D7-brane wrapped on 7-torus and its dualized objects D -dim IIB IIA D7 (1) D5 (21) D3 (35) D1 (7) D6 (7) D4 (35) D2 (21) D0 (1) F1 (7) P (7) NS5 (21) F1 (7) P (7) NS5 (21) 3 KK5 (42) KK5 (42) 0 ( 1 , 6 ) 0 ( 1 , 6 ) (240) 1 6 5 2 1 6 5 2 4 (7) (7) 2 (21) 4 (7) (7) 2 (21) 4 4 5 2 3 4 1 6 6 1 4 3 2 5 0 7 7 3 (1) 3 (21) 3 (35) 3 (7) 3 (7) 3 (35) 3 (21) 3 (1) eg.) 5 2 2 -particle in 3D is uplifted to 5 2 2 -brane in 8D( = 5 + 3) (as codim-2 object). When exotic 5 2 2 -brane in 8D is embedded into 10D, this does not depend on 2 = 10 − 8 transverse directions. (smeared / KK-reduced) necessary to keep aspects of codim-2 object Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 9 -

  10. Exotic branes D U-duality # IIB IIA 10A 1 – – – 2 ⊂ 3 10B SL ( 2 , Z ) D7 (1) 7 3 (1) – SL ( 2 , Z ) × Z 2 2 ⊂ 3 6 1 9 D7 (1) 7 3 (1) D6 (1) 3 (1) 5 2 5 2 6 1 6 ⊂ ( 8 , 1 ) SL ( 3 , Z ) D7 (1) 7 3 (1) D5 (1) NS5 (1) D6 (2) KK5 (2) 3 (1) 2 (1) 3 (2) 8 × SL ( 2 , Z ) 2 ⊂ ( 1 , 3 ) 5 2 KK5 (2) NS5 (1) 2 (1) 5 2 5 2 6 1 4 3 D7 (1) 7 3 (1) D5 (3) NS5 (3) D6 (3) KK5 (6) D4 (1) 3 (3) 2 (3) 3 (3) 3 (1) 20 ⊂ 24 7 SL ( 5 , Z ) 5 2 KK5 (6) NS5 (3) 2 (3) 5 2 5 2 3 4 6 1 4 3 D7 (1) 7 3 (1) D5 (6) NS5 (6) D3 (1) D6 (4) KK5 (12) D4 (4) 3 (6) 2 (6) 3 (1) 3 (4) 3 (4) 40 ⊂ 45 6 SO ( 5 , 5 ; Z ) 5 2 KK5 (12) NS5 (6) 2 (6) 5 2 5 2 3 4 6 1 4 3 2 5 D7 (1) 7 3 (1) D5 (10) NS5 (10) D3 (5) D6 (5) KK5 (20) D4 (10) D2 (1) 3 (10) 2 (10) 3 (5) 3 (5) 3 (10) 3 (1) 72 ⊂ 78 5 E 6 ( 6 ) ( Z ) 5 2 KK5 (20) NS5 (10) 2 (10) 5 2 5 2 6 1 4 3 D7 (1) 7 3 (1) D5 (15) NS5 (15) D6 (6) KK5 (30) D4 (20) 3 (15) 2 (15) 3 (6) 3 (20) 126 ⊂ 133 3 4 1 6 1 6 2 5 1 6 4 E 7 ( 7 ) ( Z ) D3 (15) D1 (1) F1 (1) D2 (6) F1 (1) 3 (15) 3 (1) 4 (1) 3 (6) 4 (1) 5 2 KK5 (30) NS5 (15) 2 (15) 5 2 5 2 6 1 4 3 D7 (1) 7 3 (1) D5 (21) NS5 (21) D6 (7) KK5 (42) D4 (35) 3 (21) 2 (21) 3 (7) 3 (35) 0 ( 1 , 6 ) 0 ( 1 , 6 ) 240 ⊂ 248 3 4 1 6 1 6 2 5 1 6 0 7 3 E 8 ( 8 ) ( Z ) D3 (35) D1 (7) F1 (7) P (7) D2 (21) F1 (7) D0 (1) P (7) 3 (35) 3 (7) 4 (7) (7) 3 (21) 4 (7) 3 (1) (7) 4 4 5 2 KK5 (42) NS5 (21) 2 (21) For codim-2, all branes are (un)wrapped on torus along suitable directions. → Defect branes Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 10 -

  11. Exotic branes Exotic b c n -brane : charged particle in 3D, codim-2 object in ( b + 3 ) -dim ◦ pair with standard b -brane of codim-2 in ( b + 3 ) -dim ◦ c smeared transverse directions from 10D viewpoint ◦ tension proportional to g − n ◦ s D7-brane (codim-2 object in 10D) has been studied for 20 years : F-theory Vafa: hep-th/9602022 Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 11 -

  12. 2. Exotic SL ( 2 , Z ) monodromy

  13. SL ( 2 , Z ) duality in 10D F-string : couple to B ( 2 ) τ ( z ) = ϑ 2 π + i 2 π log Λ solution : r couple to C ( 2 ) D-string : ( z = x 8 + i x 9 = r e i ϑ ) couple to τ ( z ) = C + ie − φ D7(1234567) : ()F-string() ( p, q ) -string SL ( 2 , Z ) − − − − − − → S [] E [] E d 5 D7-brane[] d 5 [ p, q ] 7-brane[] ( 1 , 0 ) -string = F1 [ 1 , 0 ] 7-brane = D7(1234567) ( 0 , 1 ) -string = D1 [ 0 , 1 ] 7-brane = 7 3 (1234567) Open D-string is ending on 7 3 (1234567). Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 13 -

  14. 7-brane and monodromy When τ moves around D7-brane counterclockwise, τ → τ + 1 it receives a magnetic “charge” of D7-brane (monodromy) : D7 τ D7 + 1 τ D7 branch cut � � − 1 1 K [ 1 , 0 ] · ( τ + 1 ) = τ , ∈ SL ( 2 , Z ) K [ 1 , 0 ] = 0 1 Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 14 -

  15. Exotic branes D7-brane : (localized in 89-plane) 2 π + i ϑ 2 π log Λ τ D7 ( z ) ≡ C + i e − φ = ( z = x 8 + i x 9 = r e i ϑ ) r When τ D7 moves around D7-brane counterclockwise ϑ → ϑ + 2 π , it receives a magnetic “charge” (monodromy) : τ D7 → τ D7 + 1 D7 T 67 , S , and T 67 − − − − − − − − − − → τ D7 + 1 τ D7 branch cut Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 15 -

  16. Exotic branes Exotic 5 2 2 -brane : (localized in 89-plane, smeared along 67-directions) � ϑ � − 1 � 2 π + i 2 π log Λ ( z = x 8 + i x 9 = r e i ϑ ) det G mn = − ρ E ( z ) = B 67 + i r When ρ E moves around 5 2 2 -brane counterclockwise ϑ → ϑ + 2 π , it receives a magnetic “charge” (monodromy) : − 1 /ρ E → − 1 /ρ E + 1 5 2 D7 2 T 67 , S , and T 67 − − − − − − − − − − → − 1 − 1 τ D7 + 1 + 1 τ D7 ρ E ρ E branch cut branch cut T 67 S T 67 → 5 2 − − → D5 − → NS5 − − D7 2 Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 16 -

  17. Monodromy of exotic 5 2 2 -brane Exotic 5 2 2 -brane : (localized in 89-plane, smeared along 67-directions) − 1 → − 1 − 1 SL ( 2 , Z ) : + 1 where = ρ NS5 ρ E ρ E ρ E 5 2 2 ✬ ✩ We cannot remove this shift  − 1 − 1 + 1  B-field gauge transformation ρ E ρ E by branch cut  coordinate transformations ✫ ✪ This property comes from × SL ( 2 , Z ) SL ( 2 , Z ) = SO ( 2 , 2 ; Z ) complex structure complexified K¨ ahler T 67 -duality Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 17 -

  18. Exotic SL ( 2 , Z ) pairs Exotic SL ( 2 , Z ) pairs by monodromy matrix K [ p,q ] : K [ p,q ] K [ p,q ] [ p, q ] S [ p, q ] E − − − − − → − − − − − → D7 in 10-dim 7 -brane D b in ( b + 3 ) -dim db -brane K [ p,q ] K [ p,q ] [ p, q ] T [ p, q ] T − − − − − → − − − − − → NS5 in 8-dim s 5 -brane KK5 in 8-dim k 5 -brane T F1 P S S T T T T T T T D7 D6 D5 D4 D3 D2 D1 D0 S NS5 T KK5 S S 5 2 T 2 S 6 1 5 2 4 3 3 4 2 5 1 6 0 7 7 3 3 3 3 3 3 3 3 T T T T T T T S 0 (1,6) 1 6 S 4 4 T TK: arXiv:1602.08606 Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 18 -

  19. 3. Applications

  20. U-duality and exotic branes D U-duality IIB IIA 10B SL ( 2 , Z ) D7 7 3 – 6 1 SL ( 2 , Z ) × Z 2 9 D7 7 3 D6 3 5 2 5 2 6 1 SL ( 3 , Z ) D7 7 3 D5 NS5 D6 KK5 3 2 3 8 × SL ( 2 , Z ) 5 2 KK5 NS5 2 5 2 5 2 6 1 4 3 D7 7 3 D5 NS5 D6 KK5 D4 3 2 3 3 7 SL ( 5 , Z ) 5 2 KK5 NS5 2 5 2 5 2 3 4 6 1 4 3 D7 7 3 D5 NS5 D3 D6 KK5 D4 3 2 3 3 3 6 SO ( 5 , 5 ; Z ) 5 2 KK5 NS5 2 . . . . . . . . . . . . Defect branes (codim-2 branes) in diverse dimensions Bergshoeff, Ort´ ın, Riccioni: arXiv:1109.4484 Tetsuji KIMURA : Exotic Branes @ ExGraS17, KEK - 20 -

Recommend


More recommend