exotic superconductivity exotic superconductivity a
play

Exotic Superconductivity Exotic Superconductivity A matter of - PowerPoint PPT Presentation

Exotic Superconductivity Exotic Superconductivity A matter of Symmetry and Topology A matter of Symmetry and Topology Feb 2013 Manfred Sigrist A B Hunting the Higgs - finally a happy end LHC CERN Switzerland P. Higgs P.W. Anderson


  1. Exotic Superconductivity Exotic Superconductivity A matter of Symmetry and Topology A matter of Symmetry and Topology Feb 2013 Manfred Sigrist A B

  2. Hunting the Higgs - finally a happy end LHC CERN Switzerland P. Higgs P.W. Anderson

  3. Hunting the Higgs - finally a happy end LHC CERN Switzerland P. Higgs P.W. Anderson

  4. Phenomenon ''Superconductivity'' vanishing electrical resistance 1911 resistivity superconductor normal metal T c temperature

  5. Phenomenon ''Superconductivity'' vanishing electrical resistance Meissner-Ochsenfeld effect 1933 1911 resistivity superconductor B B=0 B normal metal superconductor normal metal T c temperature London equation screening of magnetic field

  6. Phenomenon ''Superconductivity'' vanishing electrical resistance Meissner-Ochsenfeld effect 1933 1911 resistivity superconductor B B=0 B normal metal superconductor normal metal T c temperature London equation flux quantization screening of magnetic field Ginzburg-Landau theory spontaneously broken U(1) - gauge symmetry complex macroscopic condensate wavefunction

  7. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair

  8. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair add/remove freely Cooper pairs coherence

  9. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair pair wave function add/remove freely Cooper pairs coherence

  10. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair add/remove freely ''hard'' to add/remove electron tunneling Cooper pairs low-energy electron normal metal coherence gap eV - Δ + Δ

  11. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair pair wave function spin orbital angular momentum spin singlet parity spin triplet orbital & spin symmetry

  12. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair spin orbital Pauli principle angular spin singlet spin triplet momentum spin singlet parity spin triplet even parity odd parity

  13. Superconducting Condensate Bardeen-Cooper-Schrieffer electrons of opposite momenta superconductivity as a correlate to form Fermi surface instability a coherent state of Cooper pairs Cooper pair Pauli principle most symmetric ''conventional conventional'' spin singlet spin triplet lower symmetry ''unconventional unconventional'' even parity odd parity

  14. Helium-3 - unconventional superfluid superfluid A- and B- phase A B

  15. Helium-3 - unconventional superfluid superfluid Helium 3 pair wave function normal state symmetry A B A-phase: broken time reversal symmetry chiral phase

  16. Helium-3 - unconventional superfluid superfluid Helium 3 pair wave function normal state symmetry A B A-phase: B-phase: broken time reversal symmetry dynamical spin-orbit coupling chiral phase helical phase

  17. Helium-3 - unconventional superfluid superfluid Helium 3 A B Sr 2 RuO 4 Maeno et al. (1994) CePt 3 Si Bauer et al. (2004) heavy Fermion compound transition metal oxide non-centrosymmetric quasi-two-dimensional crystal metal chiral p-wave phase mixed-parity phase

  18. Sr 2 RuO 4 Sr 2 RuO 4 chiral p-wave superconductor chiral p-wave superconductor

  19. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 broken time reversal symmetry angular momentum analog to 3 He A-phase spin Deguchi & Maeno

  20. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 broken time reversal symmetry angular momentum orbital rotation spin spin rotation Deguchi & Maeno

  21. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 broken time reversal symmetry

  22. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 rotation angular momentum U(1) -gauge charge

  23. Sr 2 RuO 4 - chiral p-wave superconductor Maeno et al 1994 rotation angular momentum U(1) -gauge conserved ''charge'' charge Volovik

  24. Sr 2 RuO 4 - chiral p-wave superconductor magnetic moment for charge particles Cooper pair M - M SC anomalous electromagnetism charge fluctuation generate magnetic flux conserved currents generate ''charge'' transverse electric field Volovik

  25. Sr 2 RuO 4 - chiral p-wave superconductor magnetic moment for charge particles Cooper pair M - M analogy to the integer quantum Hall state SC 2-dim. anomalous B electron gas electromagnetism cyclotron orbits

  26. Sr 2 RuO 4 - chiral p-wave superconductor edge states B Quantum Hall state chiral edge state surface ''bouncing cyclotron orbits'' cyclotron continuum orbits chiral p-wave SC continuum surface Andreev bound states θ e i θ electron-hole hybridized energy gap 2 Δ Bohr-Sommerfeld-orbits hole electron

  27. Sr 2 RuO 4 - chiral p-wave superconductor edge states B Quantum Hall state chiral edge state surface ''bouncing cyclotron orbits'' cyclotron continuum states with topological nature orbits edge states topologically chiral p-wave SC protected continuum surface Andreev bound states θ e i θ electron-hole hybridized energy gap 2 Δ Bohr-Sommerfeld-orbits hole electron

  28. Sr 2 RuO 4 - chiral p-wave superconductor edge states spontaneous B edge currents Quantum Hall state driving current surface ''bouncing cyclotron orbits'' cyclotron orbits B z chiral p-wave SC Andreev bound states θ e i θ electron-hole hybridized Bohr-Sommerfeld-orbits hole screening current electron

  29. Sr 2 RuO 4 - chiral p-wave superconductor edge states spontaneous B edge currents Quantum Hall state driving current surface ''bouncing cyclotron orbits'' cyclotron orbits B z chiral p-wave SC spontaneous Hall effect Andreev bound states θ but no e i θ electron-hole hybridized Bohr-Sommerfeld-orbits Quantum Hall effect hole electron

  30. intrinsic magnetism ? intrinsic magnetism ? random local magnetism edge state currents ''edge currents'' around scanning probes at sample boundaries inhomogeneities & defects scanning Hall Tamegai et al µ SR - zero-field relaxtion scanning SQUID Kirtley, Moler et al Luke et al (1998) magnetic signal Hicks et al (2010) clearly below expected bounds data muon-spin depolarization no edge states ? intrinsic magnetism

  31. edge states ? edge states ? tunneling conductance local quasiparticle spectrum chiral edge state conventional superconductor continuum 1 eV - Δ + Δ tunneling through edge states continuum chiral p-wave superconductor 1 energy gap 2 Δ - Δ + Δ eV

  32. edge states ? edge states ? tunneling conductance local quasiparticle spectrum tunnel-contact normal Sr 2 RuO 4 conventional metal superconductor Mao, Liu et al. 1 zero-bias eV - Δ + Δ anomaly dI/dV chiral p-wave superconductor 1 - Δ + Δ eV Goll, von Löhneysen et al. Kashiwaya et al.

  33. edge states ? edge states ? tunneling conductance local quasiparticle spectrum tunnel-contact normal Sr 2 RuO 4 conventional metal superconductor chirality ? chirality ? Mao, Liu et al. 1 subtle Doppler-shift eV effects through coupling - Δ + Δ to a magnetic field dI/dV chiral p-wave superconductor 1 - Δ + Δ eV Goll, von Löhneysen et al. Kashiwaya et al.

  34. chirality ? chirality ? polar Kerr effect Kapitulnik et al. polarization axis of (2006) reflected light is rotated y x θ K out in

  35. chirality ? chirality ? polar Kerr effect Kapitulnik et al. polarization axis of (2006) reflected light is rotated y x θ K out in positive mSR: random intrinsic magnetism negative scanning probes: chiral surface currents polar Kerr effect: optical property - chirality compatible Josephson interference effect: chiral domains

  36. Anomalous Josephson effect Anomalous Josephson effect current source Pb V Sr 2 RuO 4

  37. 3 Kelvin phase - signatures of topology 3 Kelvin phase - signatures of topology Josephson coupling via Ru-inclusions current Nakamura et al Pb source (2010) z Ru Ru Pb Sr 2 RuO 4 V Sr 2 RuO 4 µ m - size Ru-inclusion Maeno et al (1997) onset of inhomogeneous superconductivity at "3-Kelvin phase"

  38. 3 Kelvin phase - signatures of topology 3 Kelvin phase - signatures of topology Josephson coupling via Ru-inclusions current Nakamura et al Pb source (2010) z Ru Ru Pb Sr 2 RuO 4 V Sr 2 RuO 4 Josephson critical current µ m - size Ru-inclusion Nakamura et al (2010) Maeno et al (1997) T c I c (mA) onset of inhomogeneous superconductivity at "3-Kelvin phase" T (K)

Recommend


More recommend