dark matter from the vector of so 10
play

Dark Matter from the Vector of SO(10) in collaboration with S. M. - PowerPoint PPT Presentation

Dark Matter from the Vector of SO(10) in collaboration with S. M. Boucenna, and E. Nardi Phys. Lett. B755 (2016) 168, arXiv:1511.02524 Martin B. Krauss Dark Side of the Universe Bergen, Norway July 28, 2016 12 th International Workshop


  1. Dark Matter from the Vector of SO(10) in collaboration with S. M. Boucenna, and E. Nardi Phys. Lett. B755 (2016) 168, arXiv:1511.02524 Martin B. Krauss Dark Side of the Universe Bergen, Norway July 28, 2016 12 th International Workshop

  2. Motivation Colorless , electrically neutral and weakly interacting particles in the GeV-TeV range well suited to reproduce DM energy density if stable on cosmological timescales . Enforcing DM staibility: Breaking GUT symmetries unifjcation and proton stability, free from gauge anomalies. 1 / 11 � R-Parity (SUSY) � Kaluza-Klein Parity � T-parity (littlest Higgs) � Z 2 , in scotogenic model, inert doublet model, etc. → remnant unbroken Z 2 parity SO (10) unifjes SM fermions with N R into 16 irrep., allows for gauge coupling

  3. [Kibble, Lazarides, Shafj (1982)] Fermions: Bosons: see, e.g., [Kadastik, Kannike, Raidal (2009); Kadastik, Kannike, Raidal (2010)] [Frigerio, Hambye (2010)] [Mambrini, Nagata, Olive, Quevillon, Zheng (2015); Nagata, Olive, Zheng (2015)] 2 / 11 The SO (10) framework I Breaking SO (10) exclusively with vev in tensor representations → unbroken Z 2 remains Stable particles in SO (10) representations 10 , 45 , 54 , 120 , 126 , 210 , 210 ′ , 16 , 144 . So far, special attention to 16 and 45 → contain SM singlets (no DD) Here: DM in fermionic 10

  4. 3 / 11 SO(10) breaking: SO (10) framework II � 45 H � SO (10) − → 3 C 2 L 2 R 1 B − L � 126 � − → 3 C 2 L 1 Y ⊗ Z 2 � 10 H � − → 3 C 1 Q ⊗ Z 2 DM in SU (2) L ⊗ SU (2) R bidoublet: � � ξ + − ξ ++ L , R L , R ξ L , R = ξ −− ξ − + L , R L , R

  5. Dark Matter mass Two possible Dirac mass terms: In our model: 4 / 11 � m b ∝ � 45 � , conserves L-R symmetry � δ m , transforms as � 54 � , breaks L-R and EW symmetries m b ξ + − ξ + − L R (0 , 0) δ m ξ + − ξ − + L ( − 1 , + 1) R No 54 , but DM couples to Higgs bidoublet via loop ( 10 × 10 ⊃ 54 )

  6. Mass splitting 5 / 11 Loop induced mass-splitting δ m ∝ v u v d m b M 2 W R � ϕ − + � � ϕ + − � W − 1 , 0 W 0 , − 1 L R ξ −− ξ −− L R ξ + − ξ − + m b L R ⇒ Two non-degenerate Dirac fermions χ l and χ h with mass m h,l = m b ± δ m

  7. Direct detection constraints TeV 6 / 11 Couplings of χ l,h to neutral gauge bosons off-diagonal : Vectorlike neutral current µ = 1 2 χ h γ µ χ l + h . c . J nc Mass splitting 2 δ m between the light and heavy neutral state, χ l and χ h is � 200 keV ⇒ DD is kinematically suppressed. Large enough splitting → upper bound on M W R � m b � 1/2 M W R � 25 1 TeV

  8. Relic Density I Mass splittings irrelevant for DM relic density: c.f. Minimal Dark Matter [Cirelli, Fornengo, Strumia (2006)] 7 / 11 → Assume two degenerate SU (2) L doublets at thermal freeze-out Relic density � 2 � m DM Ω DM h 2 ≈ 0 . 1 1 2 · 1 . 1 TeV √ � Annihilation via Z L → correct relic density for m b = 0 . 77 TeV � Additional resonant annihilation via W R and Z R

  9. Relic Density II 8 / 11

  10. DM searches Indirect Detection Collider Searches 9 / 11 � No diagonal coupling to Z L,R � Leading annihilation channel into W L W L and Z L Z L (via t-channel exchange of χ ± and χ h ) χ l → W L W L we can estimate � σ W | v |� ∼ 3 × 10 − 28 (2 TeV / m l ) 2 cm 3 / s � For χ l ¯ � Even with non-relativistic Sommerfeld corrections well below current limits ( � σ W | v |� � (10 − 25 − 10 − 24 ) cm 3 / s for the mass range 1 TeV < m l < 4 TeV ) � Most sensitive searches from monojet searches ( pp → χ a χ b j ) � Large background from Z, W + jets � Searches for quasi-degenerate Higgsino-like DM → reach of m l ∼ 250 GeV ( relic density ⇒ m l ∼ 0 . 77 TeV )

  11. Asymmetric component (c.f. Minimal Asymmetric Dark Matter [Boucenna, MBK, Nardi (2015)]) HERE: 10 / 11 � DM carries hypercharge → can distinguish particles from anti-particles � χ in chemical equilibrium with SM particles → acquires asymmetry � Asymmetric contribution to relic density signifjcant? � In the MADM SU (2) L doublet asymmetry negligible � Tree-level asymmetry transfer via W R � Resonant annihilation of symmetric component � … Still small asymmetric contribution expected, maybe except close to Z R resonance.

  12. 11 / 11 Summary & Conclusions � Remnant Z 2 from SO (10) breaking stabilizes DM � Minimal scalar sector 45 + 126 + 10 � DM in minimal 10 irrep. viable � Mass-splitting via loop with W R � Light stable Dirac fermion χ l as DM � Non-diagonal coupling to Z L → evades DD � Upper limit on M W R

Recommend


More recommend