CS4495/6495 Introduction to Computer Vision 4A-L2 Finding corners
Feature points
Characteristics of good features Repeatability/Precision • The same feature can be found in several images despite geometric and photometric transformations
Characteristics of good features Saliency/Matchability • Each feature has a distinctive description
Characteristics of good features Compactness and efficiency • Many fewer features than image pixels
Characteristics of good features Locality • A feature occupies a relatively small area of the image; robust to clutter and occlusion
Corner Detection: Basic Idea “corner”: “edge”: “flat” region: significant change no change no change in in all directions along the edge all directions with small shift direction Source: A. Efros
Finding Corners • Key property: in the region around a corner, image gradient has two or more dominant directions
Finding Corners C. Harris and M. Stephens. "A Combined Corner and Edge Detector,” Proceedings of the 4th Alvey Vision Conference : 1988
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Window Shifted Intensity function intensity Window function w(x,y) = or 1 in window, Gaussian 0 outside Source: R. Szeliski
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , I ( x , y ) E ( u , v ) E (3,2) E (0,0)
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , We want to find out how this function behaves for small shifts (u,v near 0,0)
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0) (local quadratic approximation for small u,v ):
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , 2 d F d F (0 ) 1 (0 ) 2 F x F x x ( ) (0 ) · · 2 d x d x 2
Corner Detection: Mathematics Change in appearance for the shift [ u,v ]: 2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , 2 d F d F (0 ) 1 (0 ) 2 F x F x x ( ) (0 ) · · 2 d x d x 2 E E E u (0, 0 ) (0, 0 ) (0, 0 ) 1 u u u u v E u v E u v u v ( , ) (0, 0 ) [ ] [ ] E E E v (0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv
2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0): 1 E E E (0, 0 ) (0, 0 ) (0, 0 ) u E u v E u v u v ( , ) (0, 0 ) [ ] [ ] u u u u v E E E v (0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv
2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0): 1 E E E (0, 0 ) (0, 0 ) (0, 0 ) u E u v E u v u v ( , ) (0, 0 ) [ ] [ ] u u u u v E E E v (0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv Need these derivatives…
2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0): I E u u v w x y I x u y v I x y x u y v ( , ) 2 ( , ) ( , ) ( , ) ( , ) x x , y
2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0): I I E u u u v w x y x u y v x u y v ( , ) 2 ( , ) ( , ) ( , ) x x x , y I w x y I x u y v I x y x u y v 2 ( , ) ( , ) ( , ) ( , ) xx x , y
2 E u v w x y I x u y v I x y ( , ) ( , ) ( , ) ( , ) x y , Second-order Taylor expansion of E ( u , v ) about (0,0): I I E u v w x y x u y v x u y v ( , ) 2 ( , ) ( , ) ( , ) u v y x x y , I w x y I x u y v I x y x u y v 2 ( , ) ( , ) ( , ) ( , ) xy x y ,
Second-order Taylor expansion of E ( u , v ) about (0,0): 1 E E E u (0, 0 ) (0, 0 ) (0, 0 ) E u v E u v u v ( , ) (0, 0 ) [ ] u [ ] u u u v E E E v (0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv E u v w x y I x u y v I x y I x u y v ( , ) 2 ( , ) ( , ) ( , ) ( , ) u x x , y E u v w x y I x u y v I x u y v ( , ) 2 ( , ) ( , ) ( , ) u u x x x y , w x y I x u y v I x y I x u y v 2 ( , ) ( , ) ( , ) ( , ) xx x , y E u v w x y I x u y v I x u y v ( , ) 2 ( , ) ( , ) ( , ) u v y x x y , w x y I x u y v I x y I x u y v 2 ( , ) ( , ) ( , ) ( , ) xy x y ,
Evaluate E and its derivatives at (0,0) : = 0 1 E E E u (0, 0 ) (0, 0 ) (0, 0 ) E u v E u v u v ( , ) (0, 0 ) [ ] [ ] u u u u v E E E v (0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv E w x y I x y I x y I x y (0, 0 ) 2 ( , ) ( , ) ( , ) ( , ) u x = 0 x , y E w x y I x y I x y (0, 0 ) 2 ( , ) ( , ) ( , ) u u x x x y = 0 , w x y I x y I x y I x y 2 ( , ) ( , ) ( , ) ( , ) xx x , y E w x y I x y I x y (0, 0 ) 2 ( , ) ( , ) ( , ) u v y x = 0 x y , w x y I x y I x y I x y 2 ( , ) ( , ) ( , ) ( , ) xy x y ,
Second-order Taylor expansion of E ( u , v ) about (0,0): 1 E E E u (0, 0 ) (0, 0 ) (0, 0 ) E u v E u v u v ( , ) (0, 0 ) [ ] [ ] u u u u v E E E v ( 0, 0 ) (0, 0 ) (0, 0 ) 2 v u v vv E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) u u x x x , y E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) vv y y u x , y E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) u v x y v x , y
Second-order Taylor expansion of E ( u , v ) about (0,0): 2 w x y I x y w x y I x y I x y ( , ) ( , ) ( , ) ( , ) ( , ) u x x y E u v u v x y x y ( , ) [ ] , , 2 w x y I x y I x y w x y I x y v ( , ) ( , ) ( , ) ( , ) ( , ) x y y x y x y , , E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) u u x x x , y E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) vv y y u x , y E E w x y I x y I x y (0, 0 ) 0 (0, 0 ) 2 ( , ) ( , ) ( , ) u v x y v x , y
Corner Detection: Mathematics The quadratic approximation simplifies to u E u v u v M ( , ) [ ] v where M is a second moment matrix computed from image derivatives: 2 I I I x x y M w x y ( , ) 2 I I I x y , x y y
The second moment matrix M: 2 I I I x x y M w x y ( , ) 2 I I I x y , x y y Each product is a rank 1 2x2 Can be written (without the weight): I I I I I x T x x x y M I I I I ( ) x y I I I I I y x y y y
Interpreting the second moment matrix The surface E ( u , v ) is locally approximated by a quadratic form. u E u v u v M ( , ) [ ] v 2 I I I M w x y x x y ( , ) 2 I I I x y , x y y
Recommend
More recommend