cs4495 6495
play

CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides - PowerPoint PPT Presentation

CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides by Yin Li Thanks to Srinivasa Narasimhan, Shree Nayar, David Kreigman, Marc Pollefeys Photometry: Measuring light Lighting Camera Physical Models Computer Scene Lights,


  1. CS4495/6495 Introduction to Computer Vision 5A-L1 Photometry Slides by Yin Li Thanks to Srinivasa Narasimhan, Shree Nayar, David Kreigman, Marc Pollefeys

  2. Photometry: Measuring light Lighting Camera Physical Models Computer Scene

  3. Lights, surfaces ,and shadows

  4. Reflections

  5. Refractions

  6. Interreflections

  7. Scattering

  8. Surface appearance sensor source normal surface element β€’ Image intensity = 𝑔( normal, surface reflectance, illumination ) β€’ Surface reflection depends on both the viewing and illumination directions

  9. Radiometry Radiance ( 𝑀 ): Energy carried by a ray π‘œ π‘’πœ• β€’ Power per unit area perpendicular πœ„ to direction of travel , per unit solid 𝑒𝐡 angle 𝑒𝐡cosπœ„ β€’ Units: Watts per square meter per steradian ( 𝑋𝑛 βˆ’2 𝑑𝑠 βˆ’1 )

  10. Radiometry Irradiance ( 𝐹 ): Energy arriving at a surface π‘œ π‘’πœ• β€’ Incident power in a given direction, per unit area πœ„ β€’ Units: 𝑋𝑛 βˆ’2 𝑒𝐡 𝑒𝐡cosπœ„

  11. Foreshortening: A simple observation β€œPerpendicular light” β€œForeshortened light”

  12. Radiometry Irradiance ( 𝐹 ): Energy arriving at a surface π‘œ π‘’πœ• β€’ Incident power in a given direction, per unit area πœ„ β€’ Units: 𝑋𝑛 βˆ’2 𝑒𝐡 𝑒𝐡cosπœ„ For a surface receiving radiance 𝑀(πœ„, πœ’) coming in from π‘’πœ• the corresponding irradiance is 𝐹 πœ„, πœ’ = 𝑀 πœ„, πœ’ cosπœ„ π‘’πœ•

  13. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Irradiance : Light per unit area incident on a surface Radiance : Light from the surface reflected in a given direction, within a given solid angle

  14. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 , πœ’ 𝑗 : Irradiance at surface from direction πœ„ 𝑗 , πœ’ 𝑗 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 , πœ’ 𝑠 : Radiance from surface in direction πœ„ 𝑠 , πœ’ 𝑠

  15. BRDF: Bidirectional Reflectance Distribution Function source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 , πœ’ 𝑗 : Irradiance at surface from direction πœ„ 𝑗 , πœ’ 𝑗 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 , πœ’ 𝑠 : Radiance from surface in direction πœ„ 𝑠 , πœ’ 𝑠 𝑀 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑠 ,πœ’ 𝑠 BRDF: 𝑔(πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 ) = 𝐹 𝑑𝑣𝑠𝑔𝑏𝑑𝑓 (πœ„ 𝑗 ,πœ’ 𝑗

  16. Important properties of BRDFs source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Helmholtz Reciprocity: 𝑔 πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 = 𝑔 πœ„ 𝑠 , πœ’ 𝑠 ; πœ„ 𝑗 , πœ’ 𝑗

  17. Important properties of BRDFs source sensor Z viewing πœ„ incident direction normal direction πœ„ 𝑠 , πœ’ 𝑠 πœ„ 𝑗 πœ„ 𝑠 πœ„ 𝑗 , πœ’ 𝑗 Y X surface πœ’ element Rotational Symmetry (Isotropy): 𝑔 πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 = 𝑔 πœ„ 𝑗 , πœ„ 𝑠 , πœ’ 𝑗 βˆ’ πœ’ 𝑠

  18. BRDF’s can be incredibly complicated…

  19. Reflection Models source incident Body (diffuse) Reflection: direction body β€’ Diffuse Reflection reflection β€’ Matte Appearance surface β€’ Non-Homogeneous medium β€’ Clay, paper, etc.

  20. Reflection Models Body (diffuse) Reflection: β€’ Diffuse Reflection β€’ Matte Appearance β€’ Non-Homogeneous medium β€’ Clay, paper, etc.

  21. Reflection Models incident surface source Surface Reflection: direction reflection β€’ Specular Reflection β€’ Glossy Appearance surface β€’ Highlights β€’ Dominant for Metals

  22. Reflection Models Surface Reflection: β€’ Specular Reflection β€’ Glossy Appearance β€’ Highlights β€’ Dominant for Metals

  23. Reflection Models surface source incident reflection direction Image Intensity = body Body Reflection + reflection Surface Reflection surface

  24. Diffuse Reflection and Lambertian BRDF β€’ Only body reflection, and no specular reflection β€’ Lamberts law – essentially a patch looks equally bright from every direction.

  25. Diffuse Reflection and Lambertian BRDF

  26. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 πœ„ 𝑠 𝑑 𝑀 surface element β€’ Surface appears equally bright from all directions! (independent of 𝑀 )

  27. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 πœ„ 𝑠 𝑑 𝑀 surface element β€’ Lambertian BRDF is simply a constant – the albedo : 𝑔(πœ„ 𝑗 , πœ’ 𝑗 ; πœ„ 𝑠 , πœ’ 𝑠 ) = 𝜍 𝑒

  28. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 𝑑 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝜍 𝑒 𝐽 cos πœ„ 𝑗 = 𝜍 𝑒 𝐽 ( π‘œ β‹… 𝑑 ) source intensity

  29. Diffuse Reflection and Lambertian BRDF source intensity 𝐽 sensor incident viewing normal π‘œ direction direction πœ„ 𝑗 𝑑 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝜍 𝑒 𝐽 cos πœ„ 𝑗 = 𝜍 𝑒 𝐽 ( π‘œ β‹… 𝑑 ) source intensity

  30. Specular Reflection and Mirror BRDF How about a mirror? Reflection only at mirror angle

  31. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ All incident light reflected in a single direction (visible when 𝑀 = 𝑛 )

  32. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Mirror BRDF is simply a double-delta function: 𝑔(πœ„ 𝑗 , 𝜚 𝑗 ; πœ„ 𝑀 , 𝜚 𝑀 ) = 𝜍 𝑑 πœ€(πœ„ 𝑗 βˆ’ πœ„ 𝑀 ) πœ€(𝜚 𝑗 + 𝜌 βˆ’ 𝜚 πœ‘ )

  33. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝐽 𝜍 𝑑 πœ€ πœ„ 𝑗 βˆ’ πœ„ 𝑀 πœ€ πœ’ 𝑗 + 𝜌 βˆ’ πœ’ 𝑀

  34. Specular Reflection and Mirror BRDF specular/mirror source intensity 𝐽 direction 𝑛 πœ„ 𝑛 , πœ’ 𝑛 incident normal π‘œ viewing direction 𝑑 direction πœ„ 𝑗 πœ„ 𝑀 sensor πœ„ 𝑗 , πœ’ 𝑗 𝑀 πœ„ 𝑀 , πœ’ 𝑀 surface element β€’ Surface Radiance: 𝑀 = 𝐽𝜍 𝑑 πœ€ 𝑛 βˆ’ 𝑀 or 𝐽 𝜍 𝑑 πœ€ π‘œ βˆ’ β„Ž ( β„Ž is the β€œhalf angle”)

  35. Specular Reflection and Glossy BRDF 𝑙 𝑀 = 𝐽 𝜍 𝑑 𝑛 β‹… 𝑀

  36. Specular reflection Moving the light source Changing the exponent

  37. Phong Reflection Model The BRDF of many surfaces can be approximated by: Lambertian + Specular Model source source normal Lambertian Specular Model

  38. Diffuse + Specular Reflection diffuse specular diffuse + specular

Recommend


More recommend