control charts for binary correlated variables
play

Control charts for binary correlated variables Linda Lee Ho - PowerPoint PPT Presentation

Control charts for binary correlated variables Linda Lee Ho Airlane P Alencar USP - Brazil Introduction Automated manufacturing industries Common practice - Inspections of items produced continuously n binary random variables, 1 ,


  1. Control charts for binary correlated variables Linda Lee Ho Airlane P Alencar USP - Brazil

  2. Introduction • Automated manufacturing industries • Common practice - Inspections of items produced continuously • n binary random variables, 1 , , Z Z n   • ~ Z Bernoulli p i • =1 for a non-conforming item and 0 Z i otherwise

  3. Introduction • Monitoring: the number (or the proportion) of non-conforming items in a sample of n units • np chart or p chart – used for SPC • Assumption: independent Z i

  4. Introduction • However, in many production processes • A common component in the whole process may yield a correlation between the different items. • That is         , 0; Corr Z Z i j i j

  5. Introduction • The consequences of this correlation n •  is inflated  0 Z i  1 i    n   • (1 )   Var Z np p (it is overdispersed). i    1 i

  6. Assumptions • New production process • Phase I • For high quality processes: – the correlation of the binary variables is not easily identified. n  – High frequency of  is expected 0 Z i  1 i

  7. Overdispersed binomial distribution n  •  T Z the number of non conforming items in the i  1 i sample of correlated n items.   n           0    I t   n t t   t b 1 1 P T t a a b        1 p                     ; ; ; ln (1 ) a e ln 1 p p b e   p   • Var(T)=np(1-p)[1+(n-1)  ]

  8. Overdispersed binomial distribution

  9. np x np  control charts

  10. ML estimation • Maximum likelihood and method of moment estimation of the correlation parameter are presented • Comparison of performance: compared by simulation.

  11. ML Estimation • Likelihood function   n          k n t  t     n    1 a b b ( , , , ) 1 1 0 i L T T T a a b   i 1 2 k     t ( 0, 1,..., ) t i k i i   n k           t  t n nk      0 k a 1 1   i 1  a a b b b 1 i   1    t ( 1.,,. ) i k i

  12. ML Estimation  t i ˆ b  ˆ ˆ    0 t        1 2 1 ML n n ((1 ) (1 ) ... 1) b b i ˆ ML ML   n nk 1 (1 ) b 1 ML  k t i i   ˆ 1   a   ˆ ˆ ML n nk b k b ML ML

  13. ML x MM

  14. np x np  control charts        H : versus H : H : versus H : . 0 0 1 1 a a 0 1 0 1 • For a type error I equal 5%:    ˆ ˆ • Reject null hypothesis if .95 ML   | 0  ˆ ˆ • Or a a .05 ML  | a 1

  15. Critical values – at 5%

  16. Control chart np  • a Shewhart control chart named np  to monitor the non-conforming fraction when the binary variables are correlated. • The traditional np chart is a particular case of  np  the control chart when =0.

  17. np  control charts  • Upward shifts: p p 1 0 • Given  , control limit (CL) is determined

  18. Performance of np , np  control charts

  19. Performance of np , np  control charts

  20. np  x EWMA np  control charts

  21. Performance of EWMA np  control charts

  22. Conclusions • ML and MM estimation of the correlation parameter are similar. • ML estimator – low bias • the control chart needs at least to double np  the sample size - to have the similar performance of the traditional np control chart .

  23. Thank you!

Recommend


More recommend