challenges and opportunities
play

Challenges and Opportunities April 12, 2010 Boris Murmann - PowerPoint PPT Presentation

Digitizing the Analog World: Challenges and Opportunities April 12, 2010 Boris Murmann murmann@stanford.edu Murmann Murmann Mixed-Signal Group Mixed-Signal Group Murmann Mixed-Signal Group 2 Research Overview Digital enhancement MEMS


  1. Digitizing the Analog World: Challenges and Opportunities April 12, 2010 Boris Murmann murmann@stanford.edu Murmann Murmann Mixed-Signal Group Mixed-Signal Group

  2. Murmann Mixed-Signal Group 2

  3. Research Overview Digital enhancement MEMS Sensor Biomolecule algorithms interfaces detection Signal A/D Conditioning Transducers, Signal Antennas, Processing Spin-Valve Cables, ... Signal D/A Conditioning High-performance and low- power A/D and D/A Neural converters prosthetics Medical ultrasound 3

  4. Research Examples  High-performance A/D converters  Neural prosthetics  MEMS accelerometers  Large area electronics 4

  5. Digitally Assisted A/D Converters Additional digital processing for performance enhancement Signal A/D Conditioning Analog Media Signal CLK Processing and Transducers Signal D/A Conditioning Analog Digital 5

  6. ADC for a “Digital” Serial Link No analog error accumulation and better scalability  Need efficient high-speed ADC, typically > 10GS/s  6

  7. Time-Interleaving  Popular way to increase ADC throuhgput text  1 ADC 1  2 ADC 2 X(t) Y[n]  N ADC N 7

  8. Imperfections  Mismatches result in signal distortion Gain  Offset  Timing Skew   1 text V off_1 ADC 1 G 1  2 V off_2 ADC 2 G 2 X(t) Y[n]  N V off_N ADC N G N 8

  9. Our Focus: Timing Skew (2-channel example)  1  2  9

  10. Skew Calibration Using Extra ADC Statistics-based skew measurement in digital backend  Correction through analog adjustments   1 ADC 1  2 ADC 2 Y[n]  1  2 X(t)  N ADC N Digital Backend Clock  Cal Digitally adjustable ADC Cal delay cells 10

  11. Timing of Auxiliary ADC Phase  1  2  N  Cal  1  1 ADC 1  2  2 ADC 2 Y[n]  1  2  N X(t)  N  N ADC N Digital Backend Clock  Cal  Cal ADC Cal 11

  12. Calibration Scheme For each channel, adjust delay cells until correlation between  calibration ADC output and each slice are maximized ADC Cal can be 1- bit and “slow” R(  )   1  ADC 1  2 ADC 2 Y[n]  1  2 X(t)  N ADC N Max Clock  Cal ADC Cal 12

  13.  Removed pre- publication experimental data… 13

  14. MEMS Accelerometer CMOS  Capacitance change ~10 fF/g  Desired resolution ~10 mg for airbags and ESP Must resolve capacitance changes of ~100 aF   Problem: Drift in parasitic bondwire capacitance 14

  15. Sigma-Delta Interface Mechanical V F V a C x V S/H 1 Out  C  Lead Dig IN mech A  m Decimator C V x 2   Compensator ms bs k Force- Balancing M. Lemkin and B. E. Boser, “A three -axis micromachined accelerometer with a CMOS position-sense interface and digital offset- trim electronics,“ IEEE J. Solid-State Circuits , vol. 34, pp. 456-468, April 1999. 15

  16. Offset Offset due to bond wire deformation C Offset F a 1 C V S/H x mech  C  IN Lead A  m C V x 2   Compensator ms bs k Force- Balancing 16

  17. Linear Feedback System with Two Inputs x 2 y x 1 + _ a + b f 1 1     y x x 1 2 f af 17

  18. Spring Constant Modulation  The output due to C off can be modulated to higher frequencies by modulating the spring constant k  1 k k     V F C  Out mech Off C FB   FB x C Offset F a 1 C V S/H x mech  C  IN Lead A  m C V x 2   Compensator ms bs k Force- Balancing 18

  19. Spring softening effect Acceleration Acceleration Spring Spring Electrostatic _ _ + _ _ + _ _ + _ _ +  Can be used to modulate spring constant (k) 19

  20. Modulation through Multiplexed Feedback F a V C x V S/H 1  C  mech IN Out A  m Int Com Decimator C V x 2   ms bs k k m  x f k PULSE Electrostatic Force Time-Multiplexed MOD Force-Balancing MOD Force-Balancing T T 20

  21. Output Spectrum with 1-Tone Modulation 0 0 0 -20 -20 -20 -32 dB DC Offset Power/frequency (dB/Hz) Power/frequency (dB/Hz) Power/frequency (dB/Hz) -40 -40 -40 -46 dB Acceleration Capacitance -60 -60 -60 9.1 m/s^2 0 fF -80 -80 -80 9.1 m/s^2 10 fF -89 dB -100 -100 -100 9.1 m/s^2 50 fF -120 -120 -120 -140 -140 -140 -160 -160 -160 -6 -6 -6 -5 -5 -5 -4 -4 -4 -3 -3 -3 -2 -2 -2 -1 -1 -1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Frequency (MHz) Frequency (MHz) Frequency (MHz) 21

  22. Pseudo-Random Modulation Modulating spring-constant with a pseudo-random sequence -20 -40 Output Spectrum [dB] -60 -80 -100 -120 -140 0 2 4 6 10 10 10 10 Frequency [Hz] 22

  23. Parameter Convergence Closed-loop system - Feeding back capacitance 1.2 Feedback signal [x10 -15 ] 1 0.8 Coff=0fF Coff=0.01fF 0.6 Coff=0.1fF 0.4 Coff=1fF 0.2 0 -0.2 0 0.5 1 1.5 2 Time [Sec] 23

  24. Chip Design in Progress D Out FPGA Correlator Decimator MEMS CMOS C to V Integrator Compensator Quantizer V Out Clk State- Machine Electrostatic Feedback k-modulation V Ref Gnd Scan In/Out 24

  25. Neural Prosthetics  Cortical motor prosthetics Neurons in the motor cortical areas of the brain encode  information about intended movement Courtesy L.R. Hochberg 25 Courtesy K.V. Shenoy Nature Magazine June ‘06

  26. Neural Signal Acquisition  Electrode signals consist of multiple sources DC Offset, about 15mV from electrode/tissue interface  Local field potential (LFP), ≤3mV peak, 10Hz to 100Hz  Spikes from nearby neurons, 35 μ V – 1mV peak, 500Hz to 5kHz  Courtesy M. Sahani Courtesy C.L. Klaver 26

  27. Specs  Separate the fast and slow signal acquisition for DR Custom front end design for each path  Spikes Local Field Potential Gain 600 V/V 200 V/V Lower Cutoff 300Hz 1Hz Upper Cutoff 10kHz 1kHz Input Referred Noise 2.0µVrms 1.0µVrms in 10-100Hz (total from sampling node) Total Power (96x Array) 3mW 100µW 27

  28. Spike Path Front-End SAR ADC Input Cap Output Input Stage Buffers SC Bandpass Filter 28

  29. Sampling Phase Integrate signal current on  C B and sample High-pass for DC block  using C ac and R big (off- resistance) A 1 contains a pole that  helps minimize noise folding 29

  30. A1 Implementation Details I TAIL I<< I TAIL V outp V outm M 1a M 1b V B2 V B1 Anti-alias for thermal noise Flicker noise from M 1a,b reduction 30

  31. Static Power 31

  32. Two-Channel Interface Pixel SAR ADC Frontend 32

  33. Die Photo (96 channels, 5mm x 5mm) 33

  34. The Future? 34

  35. Organic Semiconductors  Mechanically flexible  Suitable for solution processing Cover large areas at low cost  Make disposable devices  35

  36. Orbital Energy Levels of Pentacene LUMO 22 carbon atoms Unoccupied (lowest unoccupied molecular orbital) 22 π orbitals ~3 eV ~5 eV HOMO Occupied (highest occupied molecular orbital) [Slide by Hagen Klauk]

  37. P-Channel Transistor ~3 eV LUMO ~5 eV HOMO Au Au [Slide by Hagen Klauk]

  38. Active Matrix OLED Displays http://www.youtube.com/watch?v=f8S8tbQMp2k&NR=1 38

  39. Jellyfish Autonomous Node http://muri.mse.vt.edu/ 39

  40. Jellyfish Bell Prototype (Virginia Tech) A bio-inspired shape memory alloy composite (BISMAC) actuator A .A .Villanueva, et al. , 2010 Smart Mater. Struct. 19 025013 (17pp) 40

  41. Want to Make Plastic ADCs ! 41

  42. 6-bit A/D Converter Prototype Substrate Glass Interconnect Ti/Au evaporation, litho, wet etch Gate electrodes Al evaporation, shadow masking Source/Drain Au Evaporation, shadow masking Dielectric 5.7nm AlO x /SAM PFET DNTT, ~0.5 cm 2 /Vs NFET F 16 CuPc, ~0.02 cm 2 /Vs Area 28mm x 22mm Component count 74 W. Xiong , U. Zschieschang, H. Klauk, and B. Murmann, “A 3V, 6b Successive Approximation ADC using Complementary Organic Thin-Film Transistors on Glass,” ISSCC 2010. 42

  43. Organic TFTs: Air Stability   10 stored and Hole mobility (cm 2 /Vs) tested in air S 1 S dinaphto-thieno-thiophene (DNTT) O 0.1 air O 0 30 60 90 120 150 pentacene Exposure to air (days) [Slide by Hagen Klauk] Yamamoto, J. Am. Chem. Soc. 129 2224 (2007) Klauk, Adv. Mater. 19 3882 (2007) Zschieschang, Adv. Mater. 22 982 (2010) Zschieschang, MRS Spring Meeting II-7.12 (2010)

  44. ADC Schematic Output SAR Logic Calibration enables 6-bit (off-chip) To DAC precision despite poorly matched capacitors Calibration DAC V REFP V MID V REFN C-2C structure possible due DAC with Comparator Sampler small stray caps (glass) C/32 C/32 C/32 ... Bit 0 Bit 1 Bit 2, 3, 4 Bit 5 2C 2C C C C C V REFN V REFP V REFN V REFP V REFN V REFP V REFN V MID ... Input Main DAC 44

  45. Comparator CLK CLK CLK CLK Auto-zeroing cancels threshold voltage drift CLK CLK CLK CLK C S1 C S2 C S3 C S4 C F1 C F2 C F3 C F4 - + Input Output C gdp C gdn Anti-parallel PFET/NFET layout minimizes variations if C F due to misalignment     45

  46. Measured DNL/INL Before calibration, 100 Hz clock rate 4 2 DNL (LSB) 0 -2 -4 0 8 16 24 32 40 48 56 63 Code 4 2 INL (LSB) 0 -2 -4 0 8 16 24 32 40 48 56 63 Code 46

Recommend


More recommend