relative Dirac operator Laplace-Beltrami A Dirac Operator for Extrinsic Shape Analysis Hsueh - Ti Derek Liu 1 , Alec Jacobson 2 , Keenan Crane 1 1 Carnegie Mellon University 2 University of Toronto 1
Outline Goal : extend spectral geometry processing - Traditionally: intrinsic only (point - to - point distance) - Today: extrinsic information (bending in space) Basic idea : develop new differential operators - Instead of standard Laplacian, use relative Dirac operator Applications : - Classification, segmentation, correspondence 2
What is Spectral Geometry Processing? differential eigenvalues operator eigenvectors 3
What is Spectral Geometry Processing? max … = min Analogy: “Fourier transform” for surfaces 4
Why - Coordinate Invariant eigenvalues eigenvalues 15 15 10 10 eigen value eigen value 5 5 0 0 5 10 15 0 0 5 10 15 # # 5
Why - (Almost) Invariant to Tessellation eigenvalues eigenvalues 30 30 25 25 20 20 eigen value eigen value 15 15 10 10 5 5 0 0 0 5 10 15 0 5 10 15 # # 6
Why - (Almost) Invariant to Tessellation eigenvalues eigenvalues 30 30 25 25 20 20 eigen value eigen value 15 15 10 10 5 5 0 0 0 5 10 15 0 5 10 15 # # 7
Why - Isometry Invariant Benefits from Laplace - Beltrami operator 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 10 0 0 0 0 5 10 15 0 5 10 15 0 5 10 15 8
Isometry Invariance Is it a feature or a bug? 9
Sensitivity to Metric Distortion https://en.wikipedia.org/wiki/USP2 10
(Discrete) Differential Operators 11
Laplace - Beltrami Operator (intrinsic) • Discrete cotangent Laplacian 1 X ∆ p i = (cot α ij + cot β ij )( p i − p j ) 2 A i j ∈ N ( i ) Solomon, et al. 2014 12
Laplace - Beltrami Operator (intrinsic) • Discrete cotangent Laplacian 1 X ∆ p i = (cot α ij + cot β ij )( p i − p j ) (cot α ij + cot β ij )( 2 A i j ∈ N ( i ) i ) • Key idea: Laplace only depends on edge lengths ! Edge length is a intrinsic quantity Solomon, et al. 2014 13
Not Purely Intrinsic Operators • Mixture of intrinsic and extrinsic information 70 • Existing operators: 60 50 - Anisotropic Laplace 40 - Modified Dirichlet energy 30 20 anisotropic How sensitive? 10 Laplace 0 0 5 10 15 Andreux et al. 2014, Hildebrandt et al. 2012 14
Quaternionic Dirac Operator • Definition: Crane, et al. 2011 15
Quaternionic Dirac Operator • Definition: Crane, et al. 2011 16
Quaternionic Dirac Operator • Discrete Dirac: • Key idea: depends on edge vectors (rather then edge length) Crane, et al. 2011 17
Square of Dirac Operator Normal Laplace Relative Dirac Operator intrinsic extrinsic Crane. 2013 18
Discretization • Discrete relative Dirac • Matrix form 19
Basic Properties of Relative Dirac (Dirac) (relative Dirac) D N ψ = − dN ∧ d ψ | d f | 2 Crane, et al. 2011 20
Basic Properties of Relative Dirac (Dirac) (relative Dirac) D N ψ = − dN ∧ d ψ | d f | 2 • First order, self - adjoint and elliptic operator countable eigenvalues and eigenvectors Crane, et al. 2011 21
Basic Properties of Relative Dirac (Dirac) (relative Dirac) D N ψ = − dN ∧ d ψ | d f | 2 • First order, self - adjoint and elliptic operator countable eigenvalues and eigenvectors • The operator is not coordinate invariant eigenvalues are coordinate invariant eigenvectors are determined up to a constant Crane, et al. 2011 22
Basic Properties of Relative Dirac (Dirac) (relative Dirac) D N ψ = − dN ∧ d ψ | d f | 2 • First order, self - adjoint and elliptic operator countable eigenvalues and eigenvectors • The operator is not coordinate invariant eigenvalues are coordinate invariant eigenvectors are determined up to a constant Crane, et al. 2011 23
Basic Properties of Relative Dirac (Dirac) (relative Dirac) D N ψ = − dN ∧ d ψ | d f | 2 • First order, self - adjoint and elliptic operator countable eigenvalues and eigenvectors ! ! t n a • The operator is not coordinate invariant i r a v n i y r eigenvalues are coordinate invariant t e m o s i t eigenvectors are determined up to a constant o N Crane, et al. 2011 24
From Intrinsic to Extrinsic … Laplace relative Dirac 25
Applications 26
Surface Texture Classification 27
Patch Classification 28
Laplace eigenvalues 29
Infinite Potential Well • Modified sigmoid function • Operator with potential well Ex: 30
Laplacian with Infinite Potential Well eigenvalues 31
Patch Classification Maaten, et al. 2008 32
Segmentation Step 1: Adapt global point signature to the magnitude of Dirac eigenvectors point on the surface eigenvalues Rustamov, et al. 2007 33
Segmentation Step 2: Apply the consensus segmentation algorithm random initialized k - means Rodola, et al. 2014 34
anisotropic modified Dirac (ours) Laplace Dirichlet Segmentation 35
Segmentation Modified Dirichlet Anisotropic Laplace Dirac (ours) 36
Segmentation Modified Dirichlet Anisotropic Laplace Dirac (ours) 37
Correspondence • Laplace cannot differentiate between bumped out/in ? 38
Heat Kernel Signature Sun, et al. 2009 39
Correspondence • Adapt heat kernel signature to the Dirac operator Dirac kernel signature heat kernel signature 40
Correspondence • Adapt heat kernel signature to the Dirac operator Dirac kernel signature heat kernel signature 41
Correspondence Dirac kernel signature heat kernel signature 42
Conclusion • Extrinsic properties play an important role in shape analysis 43
Conclusion • Extrinsic properties play an important role in shape analysis • Our family of operators gives user the flexibility to emphasize intrinsic/extrinsic properties 44
Conclusion • Extrinsic properties play an important role in shape analysis • Our family of operators gives user the flexibility to emphasize intrinsic/extrinsic properties • Many other possible applications (machine learning? quad mesh?) 45
Conclusion • Extrinsic properties play an important role in shape analysis • Our family of operators gives user the flexibility to emphasize intrinsic/extrinsic properties • Many other possible applications (machine learning? quad mesh?) • What are other operators can we use to capture different geometric quantities? 46
Conclusion • Extrinsic properties play an important role in shape analysis • Our family of operators gives user the flexibility to emphasize intrinsic/extrinsic properties • Many other possible applications (machine learning? quad mesh?) • What are other operators can we use to capture different geometric quantities? https://github.com/alecjacobson/gptoolbox.git 47
relative Dirac operator Laplace-Beltrami Thank you! Hsueh - Ti Derek Liu, hsuehtil@andrew.cmu.edu
Recommend
More recommend