iga lecture ii dirac geometry
play

IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, - PowerPoint PPT Presentation

IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, September 6, 2011 Eckhard Meinrenken IGA Lecture II: Dirac Geometry Dirac geometry Dirac geometry was introduced by T. Courant and A. Weinstein as a common geometric framework for


  1. IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, September 6, 2011 Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  2. Dirac geometry Dirac geometry was introduced by T. Courant and A. Weinstein as a common geometric framework for Poisson structures π ∈ Γ( ∧ 2 TM ) , [ π, π ] = 0, closed 2-forms ω ∈ Γ( ∧ 2 T ∗ M ) , d ω = 0. The name comes from relation with Dirac theory of constraints. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  3. Linear Dirac geometry V vector space, V = V ⊕ V ∗ , � v 1 + α 1 , v 2 + α 2 � = � α 1 , v 2 � + � α 2 , v 1 � . Definition E ⊂ V is Lagrangian if E = E ⊥ . The pair ( V , E ) is called a linear Dirac structure. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  4. Linear Dirac geometry Examples of Lagrangian subspaces: 1 ω ∈ ∧ 2 ( V ∗ ) ⇒ Gr( ω ) = { v + ι v ω | v ∈ V } ∈ Lag( V ). 2 π ∈ ∧ 2 ( V ) ⇒ Gr( π ) = { ι α π + α | α ∈ V ∗ } ∈ Lag( V ). 3 S ⊆ V ⇒ S + ann( S ) ∈ Lag( V ). Most general E ⊂ V given by S ⊂ V , ω ∈ ∧ 2 ( S ∗ ): E = { v + α | v ∈ V , ι v ω = α | S } . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  5. Linear Dirac geometry Let V , V ′ be vector spaces. Definition A morphism R : V ��� V ′ is a Lagrangian subspaces R ⊂ V ′ × V whose projection to V ′ × V is the graph of a map A : V → V ′ . A morphism defines a relation x ∼ R x ′ ; composition of morphisms is composition of relations. Definition A morphism of Dirac structures R : ( V , E ) ��� ( V ′ , E ′ ) is a morphism R : V ��� V ′ such that E ′ = R ◦ E , E ∩ ker( R ) = 0 . Here ker( R ) = { x ∈ V | x ∼ R 0 } . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  6. Linear Dirac geometry Equivalently, a morphism R : V ��� V ′ is given by a linear map A : V → V ′ together with a 2-form ω ∈ ∧ 2 ( V ∗ ), where � v ′ = A ( v ) v + α ∼ R v ′ + α ′ ⇔ α = A ∗ ( α ′ ) + ι v ω Hence, we will also refer to such pairs ( A , ω ) as morphisms. Composition of morphisms reads: ( A ′ , ω ′ ) ◦ ( A , ω ) = ( A ′ ◦ A , ω + A ∗ ω ′ ) . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  7. Linear Dirac Geometry The conditions E ′ = R ◦ E , ker( R ) ∩ E = 0 for Dirac morphisms mean that ∀ x ′ ∈ E ′ ∃ ! x ∈ E : x ∼ R x ′ . This defines a map E ′ → E , x ′ �→ x . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  8. Dirac structures on manifolds Let M be a manifold, T M = TM ⊕ T ∗ M . Definition The Courant bracket on Γ( T M ) is [ [ v 1 + α 1 , v 2 + α 2 ] ] = [ v 1 , v 2 ] + L v 1 α 2 − ι v 2 d α 1 . Definition A Dirac structure on M is a sub-bundle E ⊆ T M such that E = E ⊥ , Γ( E ) is closed under [ [ · , · ] ]. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  9. Dirac structures on manifolds Examples of Dirac structures: 1 For ω ∈ Γ( ∧ 2 T ∗ M ), Gr( ω ) is a Dirac structure ⇔ d ω = 0. 2 For π ∈ Γ( ∧ 2 TM ), Gr( π ) is a Dirac structure ⇔ [ π, π ] = 0. 3 For S ⊂ TM a distribution, S + ann( S ) is a Dirac structure ⇔ S is integrable. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  10. Dirac structures on manifolds More generally, one can twist by a closed 3-form η ∈ Ω 3 ( M ). Put T M η = TM ⊕ T ∗ M . Definition The Courant bracket on Γ( T M η ) is [ [ v 1 + α 1 , v 2 + α 2 ] ] = [ v 1 , v 2 ] + L v 1 α 2 − ι v 2 d α 1 + ι v 1 ι v 2 η. Definition A Dirac structure on M is a sub-bundle E ⊆ T M η such that E = E ⊥ , Γ( E ) is closed under [ [ · , · ] ]. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  11. Dirac structures on manifolds Examples of Dirac structures in T M η : 1 For ω ∈ Γ( ∧ 2 T ∗ M ), Gr( ω ) is a Dirac structure ⇔ d ω = η . 2 For π ∈ Γ( ∧ 2 TM ), Gr( π ) is a Dirac structure ⇔ 1 2 [ π, π ] = − π ♯ ( η ). 3 For S ⊂ TM a distribution, S + ann( S ) is a Dirac structure ⇔ S is integrable and η | ∧ 3 S = 0. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  12. Dirac structures on manifolds Definition A map Φ: M → M ′ together with ω ∈ Ω 2 ( M ) is called a Courant morphism (Φ , ω ): T M η ��� T M ′ η ′ if η = Φ ∗ η ′ + d ω. Definition A Dirac morphism (Φ , ω ): ( T M , E ) ��� ( T M ′ , E ′ ) is a Courant morphism such that (dΦ , ω ) defines linear Dirac morphisms fiberwise. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  13. Application to Hamiltonian geometry G � g ∗ coadjoint action d µ ∈ Ω 1 ( g ∗ , g ∗ ) tautological 1-form For ξ ∈ g put e ( ξ ) = ξ g ∗ + � d µ, ξ � ∈ Γ( T g ∗ ). These satisfy [ [ e ( ξ 1 ) , e ( ξ 2 )] ] = e ([ ξ 1 , ξ 2 ]) , hence span a Dirac structure E g ∗ ⊂ T g ∗ . Remark Equivalently, E g ∗ is the graph of the Kirillov-Poisson bivector on g ∗ . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  14. Application to Hamiltonian geometry A Dirac morphism (Φ , ω ): ( T M , TM ) ��� ( T g ∗ , E g ∗ ) is a Hamiltonian g -space. That is, g acts on M , ω, Φ are invariant, and ω ( ξ g ∗ , · ) + � dΦ , ξ � = 0 , d ω = 0 , ker( ω ) = 0 . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  15. Application to q-Hamiltonian geometry G � G conjugation action, · invariant metric on g = Lie( G ), 12 θ L · [ θ L , θ L ] Cartan 3-form, η = 1 2 ( θ L + θ R ) · ξ ∈ Γ( T G η ). These satisfy For ξ ∈ g put e ( ξ ) = ξ G + 1 [ [ e ( ξ 1 ) , e ( ξ 2 )] ] = e ([ ξ 1 , ξ 2 ]) , hence span a Dirac structure E G ⊂ T G η . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  16. Application to q-Hamiltonian geometry Theorem (Bursztyn-Crainic) A q-Hamiltonian g -space is a Dirac morphism (Φ , ω ): ( T M , TM ) ��� ( T G η , E G ) . This new viewpoint is extremely useful. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  17. Application to q-Hamiltonian geometry Lemma 1 θ L · pr ∗ 2 θ R ∈ Ω 2 ( G × G ) . Then (Mult G , ς ) defines a Let ς = 1 2 pr ∗ Dirac morphism (Mult G , ς ): ( T G η , E G ) × ( T G η , E G ) ��� ( T G η , E G ) . Hence, given two q-Hamiltonian G -spaces ( M i , ω i , Φ i ), one can define their fusion product by composition � (Mult G , ς ) ◦ (Φ 1 , ω 1 ) × (Φ 2 , ω 2 )) . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  18. Application to q-Hamiltonian geometry Use · to identify g ∼ = g ∗ . Lemma Let ̟ ∈ Ω 2 ( g ) be the standard primitive of exp ∗ η . Then (exp , ̟ ) defines a Dirac morphism (exp , ̟ ): ( T g , E g ) ��� ( T G η , E G ) over the subset of g where exp is regular. Hence, if ( M , ω 0 , Φ 0 ) is a Hamiltonian G -space, such that exp regular over Φ 0 ( M ), then (Φ , ω ) := (exp , ̟ ) ◦ (Φ 0 , ω 0 ) defines a q-Hamiltonian G -space. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  19. Application to q-Hamiltonian geometry We will use the Dirac geometry viewpoint to explain the following fact. Suppose G is compact and simply connected. Fact: q-Hamiltonian G -spaces ( M , ω, Φ) carry distinguished invariant volume forms. These are the analogues of the ‘Liouville forms’ of symplectic manifolds. We will need the concept of ‘pure spinors’. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  20. Pure spinors Return to the linear algebra set-up: V = V ⊕ V ∗ , �· , ·� . Definition The Clifford algebra C l( V ) is the unital algebra with generators x ∈ V and relations x 1 x 2 + x 2 x 1 = � x 1 , x 2 � . The spinor module over C l( V ) is given by ̺ : C l( V ) → End( ∧ V ∗ ) , ̺ ( v + α ) φ = ι v φ + α ∧ φ. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  21. Pure spinors For φ ∈ ∧ V ∗ let N ( φ ) = { x ∈ V | ̺ ( x ) φ = 0 } . Lemma For φ � = 0 , the space N ( φ ) ⊆ V is isotropic. (Exercise!) Definition (E. Cartan) φ ∈ ∧ V ∗ is a pure spinor if N ( φ ) is Lagrangian. Fact: Every E ∈ Lag( V ) is given by a pure spinor, unique up to scalar. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  22. Pure spinors Example Gr( ω ) = N ( φ ) for φ = e − ω . Gr( π ) = N ( φ ) for φ = e − ι ( π ) Λ, where Λ ∈ ∧ top V ∗ − { 0 } . S + ann( S ) = N ( φ ) for φ ∈ ∧ top (ann( S )) − { 0 } . Lemma Suppose φ ∈ ∧ ( V ∗ ) is a pure spinor. Then φ [ top ] � = 0 ⇔ N ( φ ) ∩ V = 0 . (Exercise!) Example Let φ = e − ω . Then N ( φ ) ∩ V = Gr( ω ) ∩ V = ker( ω ) is trivial if and only if ( e − ω ) [ top ] � = 0. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  23. Pure spinors Lemma Suppose ( A , ω ): ( V , E ) ��� ( V ′ , E ′ ) is a Dirac morphism. If φ ′ ∈ ∧ ( V ′ ) ∗ is a pure spinor with E ′ ∩ N ( φ ′ ) = 0 , then φ = e − ω A ∗ φ ′ is a pure spinor with E ∩ N ( φ ) = 0 . Exercise! In particular if E = V then ( e − ω A ∗ φ ′ ) [ top ] is a volume form. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  24. The q-Hamiltonian volume form Back to q-Hamiltonian G -spaces, viewed as Morita morphisms (Φ , ω ): ( T M , TM ) ��� ( T G η , E G ) If we can find ψ ∈ Γ( G , ∧ T ∗ G ) with E ∩ N ( ψ ) = 0, then ( e − ω Φ ∗ ψ ) [top] is a volume form on M . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

Recommend


More recommend