walks in the quadrant differential algebraicity
play

Walks in the quadrant: differential algebraicity Mireille - PowerPoint PPT Presentation

Walks in the quadrant: differential algebraicity Mireille Bousquet-Mlou, LaBRI, CNRS, Universit de Bordeaux with Olivier Bernardi, Brandeis University, Boston Kilian Raschel, CNRS, Universit de Tours Counting quadrant walks... at the


  1. Walks in the quadrant: differential algebraicity Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux with Olivier Bernardi, Brandeis University, Boston Kilian Raschel, CNRS, Université de Tours

  2. Counting quadrant walks... at the séminaire lotharingien SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan “Computer Algebra for Lattice Path Combinatorics” SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel “Analytic and Probabilistic Tools for Lattice Path Enumeration”

  3. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). Example. S = { 10 , ¯ 10 , 1 ¯ 1 , ¯ 11 } , p 0 = ( 0 , 0 )

  4. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). What is the number q ( n ) of n -step walks starting at p 0 and contained in N 2 ? For ( i , j ) ∈ N 2 , what is the number q ( i , j ; n ) of such walks that end at ( i , j ) ? Example. S = { 10 , ¯ 10 , 1 ¯ 1 , ¯ 11 } , p 0 = ( 0 , 0 ) ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ( i , j ) = ( 5 , 1 ) ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� �����������

  5. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). What is the number q ( n ) of n -step walks starting at p 0 and contained in N 2 ? For ( i , j ) ∈ N 2 , what is the number q ( i , j ; n ) of such walks that end at ( i , j ) ? The associated generating function: � � q ( i , j ; n ) x i y j t n . Q ( x , y ; t ) = n ≥ 0 i , j ≥ 0 What is the nature of this series?

  6. A hierarchy of formal power series • Rational series A ( t ) = P ( t ) Q ( t ) • Algebraic series P ( t , A ( t )) = 0 • Differentially finite series (D-finite) d � P i ( t ) A ( i ) ( t ) = 0 i = 0 • D-algebraic series P ( t , A ( t ) , A ′ ( t ) , . . . , A ( d ) ( t )) = 0 Multi-variate series: one DE per variable

  7. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) with ¯ x = 1 / x and ¯ y = 1 / y . � � q ( i , j ; n ) x i y j t n Q ( x , y ; t ) ≡ Q ( x , y ) = n ≥ 0 i , j ≥ 0

  8. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) ,

  9. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) , or xyQ ( x , y ) = xy − tyQ ( 0 , y ) − tx 2 Q ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y )

  10. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) , or xyQ ( x , y ) = xy − tyQ ( 0 , y ) − tx 2 Q ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y ) • The polynomial 1 − t ( y + ¯ x + x ¯ y ) is the kernel of this equation • The equation is linear, with two catalytic variables x and y (tautological at x = 0 or y = 0) [Zeilberger 00]

  11. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive.

  12. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive. Example: for S ( y ; t ) = Q ( 0 , y ; t ) , � 2 y 2 − 1 t � tyS ( y ; t ) + 1 � tyS ( y ; t ) + 1 � − 2 t 2 S ( 0 ; t ) . y − ty = t − y y

  13. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive. ⇒ A special case of an Artin approximation theorem with “nested” conditions [Popescu 86]

  14. Equations with two catalytic variables are harder... D-finite transcendental xyA ( x , y ) = xy − tyA ( 0 , y ) − tx 2 A ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y ) Algebraic ( 1 − t (¯ x + ¯ y + xy )) xyA ( x , y ) = xy − tyA ( 0 , y ) − txA ( x , 0 ) Not D-finite ( 1 − t ( x + ¯ x + ¯ y + xy )) xyA ( x , y ) = xy − tyA ( 0 , y ) − txA ( x , 0 ) But why?

  15. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y

  16. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ ( , y ) and Ψ : ( x , y ) �→ ( x , ) .

  17. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) .

  18. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) . They are involutions, and generate a finite dihedral group G : Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ

  19. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) . They are involutions, and generate a finite dihedral group G : Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ Remark. G can be defined for any quadrant model with small steps

  20. The group is not always finite • If S = { 0 ¯ 1 , ¯ 1 ¯ 1 , ¯ 10 , 11 } , then P ( x , y ) = ¯ x ( 1 + ¯ y ) + ¯ y + xy and Φ : ( x , y ) �→ (¯ x ¯ y ( 1 + ¯ y ) , y ) and Ψ : ( x , y ) �→ ( x , ¯ x ¯ y ( 1 + ¯ x )) generate an infinite group: Ψ Φ Ψ Φ (¯ x ¯ y ( 1 + ¯ y ) , y ) · · · · · · · · · ( x , y ) ( x , ¯ x ¯ y ( 1 + ¯ x )) · · · · · · · · · Ψ Φ Ψ Φ

  21. 3. When G is finite: the orbit sum Example. If S = { 01 , ¯ 10 , 1 ¯ 1 } , the orbit of ( x , y ) is Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ and the (alternating) orbit sum is xy 2 + ¯ y 2 − x 2 ¯ x 2 y − ¯ OS = xy − ¯ x ¯ y + x ¯ y

  22. Classification of quadrant walks with small steps Theorem The series Q ( x , y ; t ) is D-finite iff the group G is finite. It is algebraic iff, in addition, the orbit sum is zero. [mbm-Mishna 10], [Bostan-Kauers 10] D-finite [Kurkova-Raschel 12] non-singular non-D-finite [Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite quadrant models: 79 | G | < ∞ : 23 | G | = ∞ : 56 D-finite Not D-finite OS = 0: 4 OS � = 0: 19 algebraic transcendental

  23. Classification of quadrant walks with small steps quadrant models: 79 | G | < ∞ : 23 | G | = ∞ : 56 D-finite Not D-finite OS = 0: 4 OS � = 0: 19 Random walks algebraic transcendental in probability Formal power D-finite series series algebra effective closure properties arithmetic properties Computer algebra asymptotics G-functions Complex analysis

  24. An old equation [Tutte 73] • Properly coloured triangulations ( q colours): T ( x , y ; t ) ≡ T ( x , y ) = x ( q − 1 ) + xytT ( x , y ) T ( 1 , y ) + xt T ( x , y ) − T ( x , 0 ) − x 2 yt T ( x , y ) − T ( 1 , y ) y x − 1

Recommend


More recommend