two dimensional electron gases at oxide interfaces jochen
play

Two Dimensional Electron Gases at Oxide Interfaces Jochen Mannhart - PowerPoint PPT Presentation

Two Dimensional Electron Gases at Oxide Interfaces Jochen Mannhart Center for Electronic Correlations and Magnetism University of Augsburg JST-DFG Workshop on Nanoelectronics, Kyoto, Jan. 21, 2009 G. Hammerl N. Reyren A. Herrnberger A.D.


  1. Two Dimensional Electron Gases at Oxide Interfaces Jochen Mannhart Center for Electronic Correlations and Magnetism University of Augsburg JST-DFG Workshop on Nanoelectronics, Kyoto, Jan. 21, 2009

  2. G. Hammerl N. Reyren A. Herrnberger A.D. Caviglia R. Jany S. Gariglio T. Kopp D. Jaccard C. Richter J.-M. Triscone C.W. Schneider University of Geneva S. Thiel L. Fitting-Kourkoutis Augsburg University D. Muller D.G. Schlom Cornell University M. Warusawithana C. Cen Penn State University J. Levy University of Pittsburgh DFG: SFB 484, EC: Nanoxide

  3. 2-DEGs Can Be Realized in Oxides a Mg x Zn 1- x O P SP P PE [0001] 2DEG P SP ZnO substrate b 2.0 7 v = 4 T = 0.5 K x = 0.05, n = 9 � 10 11 cm –2 6 m = 14,000 cm 2 V –1 s –1 5 1.5 5 6 4 r xy (k Ω ) 7 r xx (k Ω ) 1.0 8 3 2 0.5 1 0 0.00 2 4 6 8 10 B (T) A. Tsukazaki et al. , Science (2007)

  4. The n -type LaAlO 3 / SrTiO 3 Interface LaAlO 3 band-insulator … AlO 2 LaO LaTiO 3 TiO 2 SrO … SrTiO 3 band-insulator, quantum-paraelectric [001] A. Ohtomo, H. Hwang, Nature 427 , 423 (2004)

  5. 8 unit cells LaAlO 3 on SrTiO 3 10 4 R ☐ ( Ω ) Al La O 10 3 Ti Sr 10 2 10 100 T (K) σ s ( Ω / ☐ ) -1 n S (cm -2 ) µ (cm 2 /Vs) 300 K 5 × 10 -5 2-4 × 10 13 7 4.2 K 5 × 10 -3 2-4 × 10 13 700

  6. STEM: Cross Section LAADF HAADF 5 uc LaAlO 3 [001] SrTiO 3 Substrate L. Fitting-Kourkoutis, D.A. Muller (Cornell)

  7. The Polar Catastrophe is another Possible Source of Charge Carriers ρ ρ E V V 0.5+ - - AlO 2 AlO 2 1- 1- 1+ LaO + 1+ LaO + - - 1- AlO 2 1- AlO 2 1+ 1+ LaO + LaO + 0.5- 0 TiO 2 TiO 2 0 0 0 SrO 0 SrO 0 0 0 0 TiO 2 0 TiO 2 0 0 0 0 SrO 0 SrO 0 N. Nakagawa et al. , Nature Materials (2006) D 9

  8. Patterning the Electron Gas PMMA 2 uc LaAlO 3 SrTiO 3 poly LaAlO 3 3 uc 2 uc LaAlO 3 q2-DEG SrTiO 3 interface is not exposed to environment surface remains unexposed compatible with standard lithography techniques Schneider et al. , APL 89 , 122101 (2006) D 10

  9. 200 nm Schneider et al. , APL 89 , 122101 (2006)

  10. Low Carrier Density at the Interfaces ~2-4 × 10 13 /cm 2 TiO 2 -plane Ti O 3.9 Å

  11. Gate-Field Induced Phase Transition to 2-DEG? V G,f LaAlO 3 V G,f I S V S V D I D SrTiO 3 SrTiO 3 V G,b V G,b

  12. Field Effect Experiments - Top Gate V G,top R s ( Ω ) I - LaAlO 3 : 5 unit cells V - 300 K V + I + + Au 30 nm poly-SrTiO 3 V G,top 5 uc LaAlO 3 V G (V) - SrTiO 3

  13. Field Effect Tuning of the Interface Properties A.D. Caviglia et al. , nature 2008

  14. Measured Phase Diagram of the LaAlO 3 /SrTiO 3 Interface ∝ ( V G - V Gc ) 2/3 T BKT weak localisation R 400 mK (k Ω / ⃞ ) T BKT (mK) V G (V) large n ~10 13 /cm 2 ~4.5 × 10 13 /cm 2 A.D. Caviglia et al. , nature 2008

  15. Electric Field Lithography induce insulator-metal transition locally V tip 300 K conductance ( μ S) 3 2 D D 0 1 SrTiO 3 3 uc LaAlO 3 0 0 20 40 60 tip position ( μ m) Nanowires can be written and erased repeatedly are stable at 300 K for > 24 h (but not always) C. Cen et al. , Nature Materials 7 , 298 (2008)

  16. Electric Field Lithography induce insulator-metal transition locally 1.5 0.4 (d I /d x ) -1 (A/m) 1.0 I (nA) δ x = 2.1 nm Wikipedia 0.2 0.5 written wires with nanotube diameter 0.0 0.0 -5 0 5 x (nm) Nanowires can be written and erased repeatedly are stable at 300 K for > 24 h (but not always) C. Cen et al. , Nature Materials 7 , 298 (2008)

  17. Possible Writing Mechanism No vacancies Vacancy density n v =1/4 C. Cen et al., Science in press

  18. 2DEG subbands E C μ GaAs E V LaAlO 3 /SrTiO 3 (AlGa)As/GaAs Heterostructure

Recommend


More recommend