towards accurate model selection in deep unsupervised
play

Towards Accurate Model Selection in Deep Unsupervised Domain - PowerPoint PPT Presentation

Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation Kaichao You 1 , Ximei Wang 1 , Mingsheng Long 1 , Michael I. Jordan 2 1 School of Software, Tsinghua University 1 National Engineering Lab for Big Data Software 2 University of


  1. Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation Kaichao You 1 , Ximei Wang 1 , Mingsheng Long 1 , Michael I. Jordan 2 1 School of Software, Tsinghua University 1 National Engineering Lab for Big Data Software 2 University of California, Berkeley International Conference on Machine Learning ICML 2019 Kaichao You et al Deep Embedded Validation June 12, 2019 1 / 10

  2. Validation in UDA: the problem Outline Validation in UDA: the problem 1 IWCV: the previous solution 2 Deep Embedded Validation 3 Experiments 4 Kaichao You et al Deep Embedded Validation June 12, 2019 2 / 10

  3. Validation in UDA: the problem Validation in UDA: the problem Supervised Learning Kaichao You et al Deep Embedded Validation June 12, 2019 3 / 10

  4. Validation in UDA: the problem Validation in UDA: the problem Supervised Learning Unsupervised Domain Adaptation Kaichao You et al Deep Embedded Validation June 12, 2019 3 / 10

  5. IWCV: the previous solution Outline Validation in UDA: the problem 1 IWCV: the previous solution 2 Deep Embedded Validation 3 Experiments 4 Kaichao You et al Deep Embedded Validation June 12, 2019 4 / 10

  6. IWCV: the previous solution IWCV: the previous solution Covariate Shift Assumption p ( y | x ) = q ( y | x ) Kaichao You et al Deep Embedded Validation June 12, 2019 5 / 10

  7. IWCV: the previous solution IWCV: the previous solution Covariate Shift Assumption p ( y | x ) = q ( y | x ) Model Selection: estimate Target Risk R ( g ) = E x ∼ q ℓ ( g ( x ) , y ) Kaichao You et al Deep Embedded Validation June 12, 2019 5 / 10

  8. IWCV: the previous solution IWCV: the previous solution Covariate Shift Assumption p ( y | x ) = q ( y | x ) Model Selection: estimate Target Risk R ( g ) = E x ∼ q ℓ ( g ( x ) , y ) Importance Weighted Cross Validation 1 q ( x ) E x ∼ p w ( x ) ℓ ( g ( x ) , y ) = E x ∼ p p ( x ) ℓ ( g ( x ) , y ) = E x ∼ q ℓ ( g ( x ) , y ) = R ( g ) 1 Covariate shift adaptation by importance weighted cross validation, JMLR’2007 Kaichao You et al Deep Embedded Validation June 12, 2019 5 / 10

  9. IWCV: the previous solution IWCV: the previous solution Covariate Shift Assumption p ( y | x ) = q ( y | x ) Model Selection: estimate Target Risk R ( g ) = E x ∼ q ℓ ( g ( x ) , y ) Importance Weighted Cross Validation 1 q ( x ) E x ∼ p w ( x ) ℓ ( g ( x ) , y ) = E x ∼ p p ( x ) ℓ ( g ( x ) , y ) = E x ∼ q ℓ ( g ( x ) , y ) = R ( g ) Unbiased but the variance is unbounded Density ratio is not readily accessible 1 Covariate shift adaptation by importance weighted cross validation, JMLR’2007 Kaichao You et al Deep Embedded Validation June 12, 2019 5 / 10

  10. Deep Embedded Validation Outline Validation in UDA: the problem 1 IWCV: the previous solution 2 Deep Embedded Validation 3 Experiments 4 Kaichao You et al Deep Embedded Validation June 12, 2019 6 / 10

  11. Deep Embedded Validation Deep Embedded Validation IWCV’s variance 1 : Var x ∼ p [ ℓ w ] ≤ d α +1 ( q � p ) R ( g ) 1 − 1 α − R ( g ) 2 . 1 Learning Bounds for Importance Weighting, NeurIPS’2010 Kaichao You et al Deep Embedded Validation June 12, 2019 7 / 10

  12. Deep Embedded Validation Deep Embedded Validation IWCV’s variance 1 : Var x ∼ p [ ℓ w ] ≤ d α +1 ( q � p ) R ( g ) 1 − 1 α − R ( g ) 2 . Feature adaptation reduces distribution discrepancy 2 1 Learning Bounds for Importance Weighting, NeurIPS’2010 2 Conditional Adversarial Domain Adaptation, NeurIPS’2018 Kaichao You et al Deep Embedded Validation June 12, 2019 7 / 10

  13. Deep Embedded Validation Deep Embedded Validation IWCV’s variance 1 : Var x ∼ p [ ℓ w ] ≤ d α +1 ( q � p ) R ( g ) 1 − 1 α − R ( g ) 2 . Feature adaptation reduces distribution discrepancy 2 Control variate explicitly reduces the variance E [ z ] = ζ, E [ t ] = τ z ⋆ = z + η ( t − τ ) . E [ z ⋆ ] = E [ z ] + η E [ t − τ ] = ζ + η ( E [ t ] − E [ τ ]) = ζ. Var [ z ⋆ ] = Var [ z + η ( t − τ )] = η 2 Var [ t ] + 2 η Cov ( z , t ) + Var [ z ] η = − Cov ( z , t ) min Var [ z ⋆ ] = (1 − ρ 2 z , t ) Var [ z ] , when ˆ Var [ t ] 1 Learning Bounds for Importance Weighting, NeurIPS’2010 2 Conditional Adversarial Domain Adaptation, NeurIPS’2018 Kaichao You et al Deep Embedded Validation June 12, 2019 7 / 10

  14. Deep Embedded Validation Deep Embedded Validation IWCV’s variance 1 : Var x ∼ p [ ℓ w ] ≤ d α +1 ( q � p ) R ( g ) 1 − 1 α − R ( g ) 2 . Feature adaptation reduces distribution discrepancy 2 Control variate explicitly reduces the variance E [ z ] = ζ, E [ t ] = τ z ⋆ = z + η ( t − τ ) . E [ z ⋆ ] = E [ z ] + η E [ t − τ ] = ζ + η ( E [ t ] − E [ τ ]) = ζ. Var [ z ⋆ ] = Var [ z + η ( t − τ )] = η 2 Var [ t ] + 2 η Cov ( z , t ) + Var [ z ] η = − Cov ( z , t ) min Var [ z ⋆ ] = (1 − ρ 2 z , t ) Var [ z ] , when ˆ Var [ t ] Density ratio can be estimated discriminatively. 3 1 Learning Bounds for Importance Weighting, NeurIPS’2010 2 Conditional Adversarial Domain Adaptation, NeurIPS’2018 3 Discriminative learning for differing training and test distributions, ICML’2007 Kaichao You et al Deep Embedded Validation June 12, 2019 7 / 10

  15. Experiments Outline Validation in UDA: the problem 1 IWCV: the previous solution 2 Deep Embedded Validation 3 Experiments 4 Kaichao You et al Deep Embedded Validation June 12, 2019 8 / 10

  16. Experiments Experiments Experiments on a toy problem under covariate shift 1 . 6 Train y = f ( x ) 1 . 2 Source Risk 0 . 14 IWCV 1 . 5 Test model IWCV Target Risk 1 . 4 Train Target Risk 0 . 12 DEV 1 . 0 1 . 0 DEV 1 . 2 Test Standard Deviation 0 . 10 0 . 5 0 . 8 Error Rate ∗ 1 . 0 0 . 8 0 . 0 0 . 08 0 . 6 λ = 0 . 5 0 . 6 − 0 . 5 0 . 06 0 . 4 0 . 4 λ = 1 − 1 . 0 0 . 04 0 . 2 0 . 2 λ = 0 − 1 . 5 0 . 02 0 . 0 0 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 − 1 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 x x λ λ Kaichao You et al Deep Embedded Validation June 12, 2019 9 / 10

  17. Experiments Experiments Experiments on a toy problem under covariate shift 1 . 6 Train y = f ( x ) 1 . 2 Source Risk 0 . 14 IWCV 1 . 5 Test model IWCV Target Risk 1 . 4 Train Target Risk 0 . 12 DEV 1 . 0 1 . 0 DEV 1 . 2 Test Standard Deviation 0 . 10 0 . 5 0 . 8 Error Rate ∗ 1 . 0 0 . 8 0 . 0 0 . 08 0 . 6 λ = 0 . 5 0 . 6 − 0 . 5 0 . 06 0 . 4 0 . 4 λ = 1 − 1 . 0 0 . 04 0 . 2 0 . 2 λ = 0 − 1 . 5 0 . 02 0 . 0 0 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 − 1 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 x x λ λ Experiments on real-world problems Various datasets: VisDA/Office/Digits Various models: CDAN, MCD, GTA Deep Embedded Validation is empirically validated � Kaichao You et al Deep Embedded Validation June 12, 2019 9 / 10

  18. Experiments Thanks! Code available at github.com/thuml/Deep-Embedded-Validation Poster: tonight at Pacific Ballroom #259 Kaichao You et al Deep Embedded Validation June 12, 2019 10 / 10

Recommend


More recommend