the phase diagram of two flavour qcd
play

The phase diagram of two flavour QCD Jan M. Pawlowski Universitt - PowerPoint PPT Presentation

The phase diagram of two flavour QCD Jan M. Pawlowski Universitt Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of two flavour QCD Quark


  1. The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009

  2. Outline • Phase diagram of two flavour QCD • Quark confinement & chiral symmetry breaking • Chiral phase structure at finite density • Summary and outlook

  3. Phase diagram of QCD

  4. Phase diagram of QCD massless quarks (chiral symmetry) Strongly correlated quark-gluon-plasma deconfinement ’RHIC serves the perfect fluid’ quarkyonic: confinement & chiral symmetry FAIR , www . gsi . de hadronic phase confinement & chiral symmetry breaking

  5. Phase diagram of two flavour QCD Continuum methods 1 f π (T)/f π (0) Dual density RG-flows in QCD PNJL & PQM model Polyakov Loop 0.8 0.6 Braun, Haas, Marhauser,JMP ’09 χ L,dual 0.4 cf. talks by K. Fujushima cf. talks by J. Braun & L. Haas W. Weise 0.2 B.-J. Schaefer (chiral limit) 160 180 200 0 150 160 170 180 190 200 210 220 230 T [MeV] 300 250 200 T [MeV] 150 100 T conf 50 T χ Schaefer, JMP , Wambach ‘07 (chiral limit) 0 0 π /3 2 π /3 4 π /3 π 2 πθ

  6. Phase diagram of two flavour QCD Continuum methods 1 f π (T)/f π (0) Dual density RG-flows in QCD PNJL & PQM model Polyakov Loop 0.8 0.6 Full dynamical QCD Braun, Haas, Marhauser,JMP ’09 χ L,dual 0.4 cf. talks by K. Fujushima cf. talks by J. Braun & L. Haas W. Weise 0.2 B.-J. Schaefer (chiral limit) 160 180 200 0 150 160 170 180 190 200 210 220 230 T [MeV] 300 250 200 T [MeV] 150 100 T conf 50 T χ Schaefer, JMP , Wambach ‘07 (chiral limit) 0 0 π /3 2 π /3 4 π /3 π 2 πθ

  7. Quark confinement & chiral symmetry breaking

  8. Confinement Continuum methods (Functional RG-flows) Braun, Gies, JMP ‘07 RG-scale k: t = ln k V [ A 0 ] = − 1 2Tr log � AA � [ A 0 ] + O ( ∂ t � AA � ) − Tr log � C ¯ C � [ A 0 ] + O ( ∂ t � C ¯ C � ) + O ( V ′′ [ A 0 ]) p 0 → 2 π Tn − gA 0 p 2 � C ¯ p 2 � A A � ( p 2 ) C � ( p 2 ) p [GeV] Fischer, Maas, JMP ’08 JMP , in preparation

  9. Confinement Continuum methods Braun, Gies, JMP ‘07 V [ A 0 ] = − 1 2Tr log � AA � [ A 0 ] + O ( ∂ t � AA � ) − Tr log � C ¯ C � [ A 0 ] + O ( ∂ t � C ¯ C � ) + O ( V ′′ [ A 0 ]) ‘Polyakov loop potential’ subleading for T c, conf p 2 � C ¯ p 2 � A A � ( p 2 ) C � ( p 2 ) p [GeV] Fischer, Maas, JMP ’08 JMP , in preparation

  10. Confinement Continuum methods ⊗ k ∂ k − 1 = − − ⊗ ⊗ + 1 + 1 2 2 ⊗ ⊗ ⊗ − 1 + 2 ⊗ k ∂ k − 1 = + ⊗ ⊗ ⊗ − 1 + 2

  11. Confinement Continuum methods Φ [8 0 ] = 1 3(1 + 2 cos 1 3 π ] = 0 Φ [ A c 0 ) 2 β A c Braun, Gies, JMP ‘07

  12. Confinement Continuum methods for SU(N), G(2), Sp(2) cf. talk by Jens Braun Braun, Gies, JMP ‘07

  13. Universal properties & gauge independence Continuum methods JMP , Marhauser ‘08

  14. Imaginary chemical potential Lattice & Continuum QCD x ) = − e 2 π i θ ψ θ ( t, x ) ψ θ ( t + β , � with µ I = 2 π T θ • Roberge-Weiss symmetry Z θ = Z θ +1 / 3 deconfining confining

  15. Dual order parameter Lattice & Continuum QCD O θ = � O [ e 2 π i θ t/ β ψ ] � x ) = − e 2 π i θ ψ θ ( t, x ) with ψ θ ( t + β , � imaginary chemical potential µ = 2 π i θ / β for ψ θ = e 2 π i θ t/ β ψ � 1 z = e 2 π i θ z ˜ d θ O θ e − 2 π i θ order parameter for confinement O = 0 Dual order parameter • Lattice Gattringer ‘06 Synatschke, Wipf, Wozar ‘08 Bruckmann, Hagen, Bilgici, Gattringer ‘08 • Continuum Fischer, ’09; Fischer, Mueller ‘09 imaginary chemical potential Braun, Haas, Marhauser, JMP ‘09 cf. talks by J. Braun, C. Fischer, L. Haas, A. Wipf

  16. Dual order parameter Lattice & Continuum QCD � 1 ˜ d θ O θ e − 2 π i θ O = 0 • no imaginary chemical potential (lattice studies): DSE: 4 loop and more ˜ FRG: 3 loop and more O • imaginary chemical potential I: evaluated at equations of motion ˜ O [ � A 0 � θ ] ≡ 0 Roberge-Weiss • imaginary chemical potential II: evaluated at a fixed background ˜ standard FRG & DSE breaking of Roberge-Weiss O [ � A 0 � θ ] � = 0

  17. Dual order parameter Lattice & Continuum QCD � 1 ˜ d θ O θ e − 2 π i θ O = 0 • no imaginary chemical potential (lattice studies): DSE: 4 loop and more ˜ FRG: 3 loop and more O • imaginary chemical potential I: evaluated at equations of motion ˜ O [ � A 0 � θ ] ≡ 0 Roberge-Weiss • imaginary chemical potential II: evaluated at a fixed background ˜ standard FRG & DSE breaking of Roberge-Weiss O [ � A 0 � θ ] � = 0

  18. Dual order parameter Continuum methods (Functional RG-flows) O θ = � O [ e 2 π i θ t/ β ψ ] � x ) = − e 2 π i θ ψ θ ( t, x ) with ψ θ ( t + β , � imaginary chemical potential µ = 2 π i θ / β for ψ θ = e 2 π i θ t/ β ψ � 1 z = e 2 π i θ z d θ O θ e − 2 π i θ order parameter for confinement 0 f π ( T, θ ) ’fermionic pressure di ff erence’ p ( T, θ ) ≃ P ( T, θ ) − P ( T, 0) θ θ f π p T T fixed A 0 : no Roberge-Weiss periodicity Braun, Haas, Marhauser, JMP ‘09

  19. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods (Functional RG-flows) mesonic quantum • RG-flow of Effective Action (Effective Potential) fluctuations ∂ t Γ k [ φ ] = 1 + 1 − − 2 2 quark quantum fluctuations • flow of gluon propagator ... pure gauge theory flow + + cf. talk by L. Haas

  20. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods f π (T)/f π (0) 1 Dual density Polyakov Loop 0.8 0.6 χ L,dual 0.4 0.2 160 180 200 0 150 160 170 180 190 200 210 220 230 T [MeV] cf. talks by J. Braun & L. Haas T χ = T conf ≃ 180MeV Braun, Haas, Marhauser, JMP ‘09

  21. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods 1% ∆ ˜ n Φ 0.8% 0.6% Δ n /L ~ 0.4% 0.2% 0% 140 160 180 200 220 240 T [MeV] n = ˜ n [ � A 0 � ] Deviation of dual density from Polyakov loop ∆ ˜ − Φ [ � A 0 � ] : n [0] ˜ Braun, Haas, Marhauser, JMP ‘09

  22. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods & lattice compatible with Karsch et al ’08 f π (T)/f π (0) 1 N f = 2 + 1 Dual density Polyakov Loop 0.8 0.6 T χ = T conf ≃ 180MeV χ L,dual N f = 2 0.4 0.2 160 180 200 compatible with Fodor et al ’08? 0 150 160 170 180 190 200 210 220 230 175MeV ≃ T c, conf > T c, χ ≃ 150MeV T [MeV] N f = 2 + 1 Braun, Haas, Marhauser, JMP ‘09

  23. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods 300 250 200 T [MeV] 150 100 T conf 50 T χ 0 0 π /3 2 π /3 4 π /3 π 2 πθ chemical potential : µ = 2 π i T θ Braun, Haas, Marhauser, JMP ‘09

  24. Full dynamical QCD: N_f = 2 & chiral limit Continuum methods & lattice agreement lattice results 300 Kratochvila et al ‘06 & Wu et al ‘06 250 200 T [MeV] adjust 8-fermi interaction 150 100 T conf 50 T χ Polyakov-NJL model 0 Sakai et al ‘09 0 π /3 2 π /3 π 4 π /3 2 πθ Braun, Haas, Marhauser, JMP ‘09 T χ T conf

  25. Chiral phase structure at finite density

  26. Phase diagram of QCD Polyakov - Quark-Meson model quarkyonic phase ? washed out by quantum fluctuations? N f = 2 Schaefer, JMP , Wambach ‘07

  27. Summary & Outlook

  28. Summary & outlook • Phase diagram of QCD • Confinement & chiral symmetry breaking at finite temperature f π (T)/f π (0) 1 Dual density Polyakov Loop 0.8 0.6 χ L,dual 0.4 0.2 160 180 200 0 150 160 170 180 190 200 210 220 230 T [MeV]

  29. Summary & outlook • Phase diagram of QCD • Confinement & chiral symmetry breaking at finite temperature f π (T)/f π (0) 1 Dual density Polyakov Loop 0.8 0.6 χ L,dual 0.4 0.2 160 180 200 0 150 160 170 180 190 200 210 220 230 T [MeV] • Dynamical hadronisation QCD flows dynamically into hadronic effective theories • Next steps: real chemical potential & 2+1 flavours work in progress

  30. Summary & outlook • Phase diagram of QCD • Confinement & chiral symmetry breaking at finite temperature • Dynamical hadronisation • critical point and phase lines in effective theories

  31. Summary & outlook • Phase diagram of QCD • Confinement & chiral symmetry breaking at finite temperature • Dynamical hadronisation • critical point and phase lines in effective theories • Hadronic properties e.g. • Next step Top-down meets bottom-up Refine effective hadronic theories

  32. Summary & outlook • Phase diagram of QCD • Confinement & chiral symmetry breaking at finite temperature • Dynamical hadronisation • critical point and phase lines in effective theories • Hadronic properties • non-equilibrium physics

Recommend


More recommend